Universal Serial Bus Type-C (USB Type-C)
Functional Test Specification
Chapters 4 and 5
A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS" AND WITH NO WARRANTIES, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. NO WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2/10/15</td>
<td>Initial revision for internal review only.</td>
</tr>
<tr>
<td>0.6</td>
<td>2/23/15</td>
<td>First revision for external review</td>
</tr>
<tr>
<td>0.6</td>
<td>3/8/15</td>
<td>Updated to reflect USB Type-C Specification Revision 1.1, mostly affecting Connection State Machines. More specific revisions in progress.</td>
</tr>
<tr>
<td>0.61</td>
<td>4/10/15</td>
<td>Updated to reflect finalized version of USB Type-C Specification Revision 1.1</td>
</tr>
<tr>
<td>0.63</td>
<td>5/13/15</td>
<td>Tests updated to reflect that Vconn can only be checked on PUT_Rs. Test implementation is underway</td>
</tr>
<tr>
<td>0.63</td>
<td>5/27/15</td>
<td>CVS block diagram added. Debug Accessory checks added.</td>
</tr>
<tr>
<td>0.64</td>
<td>6/17/15</td>
<td>Connection State tests implemented</td>
</tr>
<tr>
<td>0.65</td>
<td>7/22/15</td>
<td>Disconnect times are immediate, Vconn is optional</td>
</tr>
<tr>
<td>0.66</td>
<td>8/31/15</td>
<td>TDs are headings, TDs are revised per several ECRs</td>
</tr>
<tr>
<td>0.67</td>
<td>9/14/15</td>
<td>Update to reflect USB type-C Specification Revision 1.1 changes missed</td>
</tr>
<tr>
<td>0.68</td>
<td>10/8/15</td>
<td>Detach timer updates, TD 4.18, 4.31 updates</td>
</tr>
<tr>
<td>0.68.1</td>
<td>11/28/15</td>
<td>Requirement update (Product Section), addition to Source-Capable Tests and Sink-Capable Tests sections describing test initialization for PD DRPs with Source/Sink default.</td>
</tr>
<tr>
<td>0.7</td>
<td>1/6/16</td>
<td>Update TD Numbering to allow for changes ahead, Try.SNK and Try.SRC connection test placeholders added, various other edits</td>
</tr>
<tr>
<td>0.7</td>
<td>1/15/16</td>
<td>Fixed a couple TD Numbering errors</td>
</tr>
<tr>
<td>0.71</td>
<td>3/3/16</td>
<td>Updated to IPDDebounce checks out of AttachWait.SNK, tAMETimeout update, various other edits</td>
</tr>
<tr>
<td>0.73</td>
<td>6/17/16</td>
<td>Updated test applicability for each TD and included VIF field explanation in testing</td>
</tr>
<tr>
<td>0.75</td>
<td>10/18/16</td>
<td>Added Try.SNK and Try.SRC tests (18 new tests) and some updates to DRP tests accordingly</td>
</tr>
<tr>
<td>0.76</td>
<td>12/4/16</td>
<td>Misc. timings and inconsistent steps updates</td>
</tr>
<tr>
<td>0.77</td>
<td>1/3/18</td>
<td>Vconn 70mW, Attach and Detach timings, Safe state, clarify PD messaging, BC 1.2 current, Audio Accessory checks, Applicability Sections update, attach Ra for applicable tests, DRP attach states</td>
</tr>
<tr>
<td>0.78</td>
<td>3/21/18</td>
<td>TD 4.2.1 – Editorial change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.7.3 – Updated timers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.8.3 – Updated to include Try.SNK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDs 4.10.1, 4.10.2 – SNK power sub-states update with USB Self and Bus-powered descriptor info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIF field update Type_C_Battery_Powered to Port_Battery_Powered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.11.2 – Updated to clarify PUT cannot source Rp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.12.2 – Editorial change</td>
</tr>
<tr>
<td>0.79</td>
<td>5/28/18</td>
<td>TD 4.2.1, 4.5.1 – Terms present by 1s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.2.4, 4.6.3 – Updated timers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.2.8, 4.11.1 – Applicability updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.5.4, 4.6.3 – Updated to Attached.SRC Exit ECN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.7.5 – CVS acts as Active Cable 5A capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD 4.9.4 – Refers to ACCEPT not PS_RDY</td>
</tr>
</tbody>
</table>
Compliance Rev 0.2080

<table>
<thead>
<tr>
<th>0.2080</th>
<th>5/28/18/10/26/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD 4.10.1, 4.10.2, 4.10.3</td>
<td>Power check updates</td>
</tr>
<tr>
<td>TD 4.11.2</td>
<td>Dead battery clarification</td>
</tr>
<tr>
<td>TD 4.2.1, 4.5.1</td>
<td>Terms present by 1s</td>
</tr>
<tr>
<td>TD 4.2.4, 4.6.3</td>
<td>Update timers</td>
</tr>
<tr>
<td>TD 4.2.8, 4.11.1</td>
<td>Applicability updated</td>
</tr>
<tr>
<td>TD 4.5.4, 4.6.3</td>
<td>Updated to Attached SRC Exit ECN</td>
</tr>
<tr>
<td>TD 4.7.5</td>
<td>CVS acts as Active Cable 5A capability</td>
</tr>
<tr>
<td>TD 4.9.1</td>
<td>Refer to ACCEPT not PS_RDY</td>
</tr>
<tr>
<td>TD 4.10.1, 4.10.2, 4.10.3</td>
<td>Power check updates</td>
</tr>
<tr>
<td>TD 4.11.2</td>
<td>Dead battery clarification 1.1 - Captive Cable hot plug incorporated</td>
</tr>
<tr>
<td>TD 4.1.1, 4.11.1</td>
<td>Check that USB 2.0 and USB 3.2 terms are not present</td>
</tr>
<tr>
<td>TD 4.2.1, 4.5.1, 4.6.5, 4.7.5</td>
<td>Emulate PD 3.0 and PD 2.0</td>
</tr>
<tr>
<td>Active Cable</td>
<td></td>
</tr>
<tr>
<td>TD 4.2.1, 4.4.8, 4.5.1, 4.6.5, 4.7.5</td>
<td>Vconn checks</td>
</tr>
<tr>
<td>Various TDs</td>
<td>Timers clarified</td>
</tr>
<tr>
<td>TD 4.3.4</td>
<td>Try.SNK tCCTryDebounce</td>
</tr>
<tr>
<td>TD 4.3.5, 4.10.6</td>
<td>Alt Mode Exit Mode tested</td>
</tr>
<tr>
<td>TD 4.5.4, 4.6.3, 4.7.3</td>
<td>Vbus disconnect check</td>
</tr>
<tr>
<td>TD 4.10.3</td>
<td>Suspect power clarification</td>
</tr>
<tr>
<td>TD 4.12.2</td>
<td>Fix numUFP</td>
</tr>
</tbody>
</table>

Significant Contributors:
- Amanda Hosler Specwerkz LLC
- Abel Astley Ellisys Corporation
- Mario Pasquali Ellisys Corporation
- Tyler Joe Teledyne LeCroy Corporation
- Mike Micheletti Teledyne LeCroy Corporation

Contents
- **Introduction** .. 5
- **Terminology** .. 5
- **Assertions** .. 6
- **Test Requirements** .. 30
- **Hardware** ... 30
- **Electrical** .. 3140
- **Timing** .. 31
- **Product** ... 32
- **Tests** ... 35
- **Connection Tests** ... 36
 - **Source Tests** .. 37
 - **Sink Tests** ... 4241
 - **SNKAS Tests** .. 4645
 - **DRP Tests** .. 5241
Introduction

These tests check that a USB Type-C connector is compliant to the USB Type-C Chapters 4 and 5 and Appendix A asserts and functional requirements.

There are a variety of different operational approaches for a USB Type-C connector. For example, a basic mouse will never host or source current to another device, so its USB Type-C connector only needs to support a UFP and Sink role. A smartphone may host a mouse or keyboard, and may be a device hosted by a USB Charger. The USB Type-C connector for the phone in this example needs to support both UFP and DFP, and both Source and Sink roles. A glance at the USB Type-C configuration matrix in Spec Table 4-23 gives an idea of the available USB Type-C Product Types covered in this spec.

Due to the variety of connections to be made with USB Type-C connectors, there is a variety of electrical and timing requirements that constrain their interaction and lead to functional connections.

Tests are groups by USB Type-C Connection State implementation, Source/Sink Capability, and whether the port belongs to a Hub.

Terminology

The following table describes the terms used in this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Background Check – Used in the assertions table to indicate an assertion is implicitly verified as a function of running a Type-C Functional Test.</td>
</tr>
<tr>
<td>CabCon</td>
<td>USB Type-C Cable Assembly and Connector Tests – Used in the assertions table to indicate an assertion is verified by the USB Type-C Cable Assembly and Connector Test Suite.</td>
</tr>
<tr>
<td>CVS</td>
<td>USB Type-C Connection Verification System. Test equipment capable of performing the USB Type-C Functional tests defined in this document.</td>
</tr>
<tr>
<td>DFP</td>
<td>Downstream Facing Port – A USB Type-C port that supports the USB 3.1 Link State Machine or USB 2.0 data as a downstream facing port.</td>
</tr>
<tr>
<td>DRP</td>
<td>Dual Role Port – A USB Type-C port that supports the USB Type-C Connection State Machines as a DRP. This port is capable of acting as a Source and a Sink.</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test – the USB-C product which incorporates the PUT referred to in each Test Definition.</td>
</tr>
</tbody>
</table>
Asserts

Compliance criteria are provided as a list of assertions that describe specific characteristics or behaviors that must be met. Each assertion provides a reference to the USB 3.1 specification or other documents from which the assertion was derived. In addition, each assertion provides a reference to the specific test description(s) where the assertion is tested.

Each test assertion is formatted as follows:

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test #</th>
<th>Assertion Description</th>
</tr>
</thead>
</table>

Assertion#: Unique identifier for each spec requirement. The identifier is in the form USB31_SPEC_SECTION_NUMBER#X, where X is a unique integer for a requirement in that section.

Assertion Description: Specific requirement from the specification

Test #: A label for a specific test description in this specification that tests this requirement. Test # can have one of the following values:

- **NT**: This item is not explicitly tested in a test description. Items can be labeled NT for several reasons – including items that are not testable, not important to test for interoperability, or are indirectly tested by other operations performed by the compliance test.
- **X.X**: This item is covered by the test described in test description X.X in this specification.
- **IOP**: This assertion is verified by the USB 3.1 Interoperability and Backwards Compatibility Test Suite.
- **BC**: This assertion is applied as a background check in all test descriptions.
- **PD**: This assertion is verified by the USB-IF Power Delivery Test Suite.
This assertion is verified by the USB Type-C Cable Assembly and Connector Test Suite.

Test descriptions provide a high level overview of the tests that are performed to check the compliance criteria. The descriptions are provided with enough detail so that a reader can understand what the test does. The descriptions do not describe the actual step-by-step procedure to perform the test.

The following Table presents the USB Type-C Specification Chapter 4 and 5 asserts.

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Side Band Use (SBU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3#1</td>
<td>4.1</td>
<td>The SBU pins on a port shall either be open circuit or have a weak pull-down to ground no stronger than zSBU Termination.</td>
</tr>
<tr>
<td>4.4 Power and Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1 IR Drop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1#1</td>
<td>CabCon</td>
<td>The maximum allowable cable IR drop for ground shall be 250 mV and for VBUS shall be 500 mV through the cable to the cable’s maximum rated VBUS current capacity.</td>
</tr>
<tr>
<td>4.4.1#2</td>
<td>CabCon</td>
<td>When VCONN is being sourced, the IR drop for the ground shall still be met considering any additional VCONN return current.</td>
</tr>
<tr>
<td>4.4.2 VBUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.2#1</td>
<td>4.2 4.4</td>
<td>The allowable default range for VBUS as measured at the DFP receptacle shall be as defined by the USB 2.0 Specification and USB 3.1 Specification.</td>
</tr>
<tr>
<td>4.4.2#2</td>
<td>4.1 4.2 4.4</td>
<td>The Source’s USB Type-C receptacle VBUS pin shall remain unpowered and shall limit the capacitance between Vbus and GND as specified in Table 4-2 until a Sink is attached.</td>
</tr>
<tr>
<td>4.4.2#3</td>
<td>4.2 4.4</td>
<td>The Source’s VBUS pin shall return to the unpowered state when the Sink is detached.</td>
</tr>
<tr>
<td>4.4.2#4</td>
<td>4.2</td>
<td>A DRP or DFP or UFP with Accessory Support implementing an Rp pull-up as its method of connection detection shall provide an impedance between VBUS and GND on its receptacle pins as specified in Table 4-2 when not sourcing power on VBUS (i.e., when in states Unattached.SRC or Unattached.Accessory)</td>
</tr>
<tr>
<td>4.4.3 VCONN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.3#1</td>
<td>BC</td>
<td>Initially, VCONN shall be sourced by all USB Type-C receptacles that source Vbus and utilize the SSTX and SSRX pins during specific connection states as described in Section 4.5.2.2.</td>
</tr>
</tbody>
</table>
Table 4-4 provides the voltage and power requirements that shall be met for VCONN.

The VCONN source shall disconnect the bulk capacitance from the receptacle when VCONN is powered off.

Table 4-5 provides the requirements that shall be met for cables that consume VCONN power.

A cable shall not present more than the equivalent inrush capacitance (10μF) to the VCONN source.

Table 4-4 provides the requirements that shall be met for cables that consume VCONN power.

VCONNDischarge is the time from the point that the cable is detached until VCONNDischarge shall be met.

Table 4 provides the voltage and power requirements that shall be met for VCONN.

The VCONN source shall disconnect the bulk capacitance from the receptacle when VCONN is powered off.

Table 4-5 provides the requirements that shall be met for cables that consume VCONN power.

A cable shall not present more than the equivalent inrush capacitance (10μF) to the VCONN source.

VCONNDischarge is the time from the point that the cable is detached until VCONNDischarge shall be met.

Table 4 provides the voltage and power requirements that shall be met for VCONN.

The VCONN source shall disconnect the bulk capacitance from the receptacle when VCONN is powered off.

Table 4-5 provides the requirements that shall be met for cables that consume VCONN power.

A cable shall not present more than the equivalent inrush capacitance (10μF) to the VCONN source.

VCONNDischarge is the time from the point that the cable is detached until VCONNDischarge shall be met.

Table 4 provides the voltage and power requirements that shall be met for VCONN.

The VCONN source shall disconnect the bulk capacitance from the receptacle when VCONN is powered off.

Table 4-5 provides the requirements that shall be met for cables that consume VCONN power.

A cable shall not present more than the equivalent inrush capacitance (10μF) to the VCONN source.

VCONNDischarge is the time from the point that the cable is detached until VCONNDischarge shall be met.

Table 4 provides the voltage and power requirements that shall be met for VCONN.

The VCONN source shall disconnect the bulk capacitance from the receptacle when VCONN is powered off.

Table 4-5 provides the requirements that shall be met for cables that consume VCONN power.

A cable shall not present more than the equivalent inrush capacitance (10μF) to the VCONN source.

VCONNDischarge is the time from the point that the cable is detached until VCONNDischarge shall be met.
<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.1.2#2</td>
<td>Not Tested</td>
<td>A Source shall transition to Unattached.SRC when directed.</td>
</tr>
<tr>
<td>4.5.2.1.2#2</td>
<td>Not Tested</td>
<td>A DRP shall transition to either Unattached.SNK or Unattached.SRC when directed.</td>
</tr>
<tr>
<td>4.5.2.2 ErrorRecovery State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.2#1</td>
<td>Not Tested</td>
<td>If the ErrorRecovery state is not supported, the port shall be directed to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disabled state if supported. IF the Disabled state is not supported, the port will</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be directed to either the Unattached.SNK or Unattached.SRC states.</td>
</tr>
<tr>
<td>4.5.2.2.1 ErrorRecovery State Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.1.1#1</td>
<td>Not Tested</td>
<td>The port shall not drive VBUS or VCONN, and shall present a high-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impedance to ground (above zOPEN) on its CC pins.</td>
</tr>
<tr>
<td>4.5.2.2.2 Exiting from ErrorRecovery State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.2.1#1</td>
<td>Not Tested</td>
<td>A Sink shall transition to Unattached.SNK after tErrorRecovery</td>
</tr>
<tr>
<td>4.5.2.2.2.2#2</td>
<td>Not Tested</td>
<td>A Source shall transition to Unattached.SRC after tErrorRecovery</td>
</tr>
<tr>
<td>4.5.2.2.2.2#2</td>
<td>Not Tested</td>
<td>A DRP shall transition to Unattached.SNK or Unattached.SRC after tErrorRecovery</td>
</tr>
<tr>
<td>4.5.2.2.3 Unattached.SNK State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.3#1</td>
<td>4.37</td>
<td>A port with a dead battery shall enter this state while unpowered.</td>
</tr>
<tr>
<td>4.5.2.2.3 Unattached.SNK State Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.3.1#1</td>
<td>4.8 4.9</td>
<td>The port shall not drive VBUS or VCONN</td>
</tr>
<tr>
<td>4.5.2.2.3.1#2</td>
<td>4.8 4.9</td>
<td>Both CC pins shall be independently terminated to ground through Rd.</td>
</tr>
<tr>
<td>4.5.2.2.3 Exiting from Unattached.SNK State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.3.2#1</td>
<td>4.8 4.9</td>
<td>If the port supports USB PD or accessories, the port shall transition to</td>
</tr>
<tr>
<td></td>
<td>4.17</td>
<td>AttachWait.SNK when a Source connection is detected, as indicated by the SNK.Rp state</td>
</tr>
<tr>
<td></td>
<td>4.17</td>
<td>on one of its CC pins</td>
</tr>
<tr>
<td>4.5.2.2.3.2#2</td>
<td>4.15 4.17</td>
<td>A DRP shall transition to Unattached.SRC within tDRPTransition after the state of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>both CC pins is SNK.Open for tDRP - dcSRC.DRP * tDRP or if directed.</td>
</tr>
<tr>
<td>4.5.2.2.3.2#3</td>
<td>4.12</td>
<td>A Sink with Accessory support shall transition to Unattached.Accessory within</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tDRPTransition after the state of both CC pins is SNK.Open for tDRP - dcSRC.DRP * tDRP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or if directed.</td>
</tr>
<tr>
<td>4.5.2.2.4 AttachWait.SNK State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.2.4.1#1</td>
<td>4.8 4.9</td>
<td>The port shall not drive VBUS or VCONN</td>
</tr>
</tbody>
</table>

9
Assertion Description

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.4.1#2</td>
<td>4.8 4.9</td>
<td>Both CC pins shall be independently terminated to ground through Rd.</td>
</tr>
<tr>
<td>4.5.2.4.1#3</td>
<td></td>
<td>It is strongly recommended that a USB 3.1 SuperSpeed device hold off Vbus detection to the device controller until the Attached.SNK state or the DebugAccessory.SNK state is reached, i.e. at least one CC pin is in the SNK.Rp state.</td>
</tr>
</tbody>
</table>

4.5.2.4.2 Exiting from AttachWait.SNK State

- **4.5.2.4.2#1**
 - 4.9
 - A Sink shall transition to Unattached.SNK when the state of both CC pins is SNK.Open for at least tPDDebounce.

- **4.5.2.4.2#2**
 - 4.17
 - A DRP shall transition to Unattached.SRC when the state of both CC pins is SNK.Open for at least tPDDebounce.

- **4.5.2.4.2#3**
 - 4.8 4.9
 - The port shall transition to Attached.SNK after the state of only one of the CC1 or CC2 pins is SNK.Rp for at least tCCDebounce and Vbus is detected. Note the Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on both CC pins, but this event will not exceed tPDDebounce.

- **4.5.2.4.2#4**
 - If the port supports Debug Accessory Mode, the port shall transition to DebugAccessory.SNK if the state of both the CC1 and CC2 pins is SNK.Rp for at least tCCDebounce and Vbus is detected.

- **4.5.2.4.2#5**
 - A DRP that strongly prefers the Source role may optionally transition to Try.SRC instead of Attached.SNK when the state of one CC pin has been SNK.Rp for at least tCCDebounce and Vbus is detected.

4.5.2.4.5 Attached.SNK State

- **4.5.2.4.5#1**
 - Not Tested
 - A port that entered this state directly from Unattached.SNK due to detecting Vbus shall not determine orientation or availability of higher than Default USB Power and shall not use USB PD.

4.5.2.4.5.1 Attached.SNK State Requirements

- **4.5.2.4.5.1#1**
 - Untestable
 - If the port needs to determine the orientation of the connector, is shall do so only upon entry to this state by detecting which CC pin is connected through the cable (i.e., the CC pin that is in the SNK.Rp state).

- **4.5.2.4.5.1#2**
 - 4.8 4.9 4.26
 - If the port supports signaling on USB SuperSpeed pairs, it shall functionally connect the USB SuperSpeed pairs and maintain the connection during and after a USB PD PR_Swap.

- **4.5.2.4.5.1#3**
 - 4.8 4.9
 - If the port has entered the Attached.SNK state from the AttachWait.SNK or TryWait.SNK states, only one CC pin will be in the SNK.Rp state. The port shall continue to terminate this CC pin to ground through Rd.

- **4.5.2.4.5.1#4**
 - 4.34
 - If the port has entered the Attached.SNK state from the Attached.SRC state following a USB PD PR_Swap, the port shall terminate the connected CC pin to ground through Rd.

- **4.5.2.4.5.1#5**
 - 4.8 4.9
 - The port shall meet the UFP Power Sub-State requirements specified in Section 4.5.2.3.

- **4.5.2.4.5.1#6**
 - 4.8 4.9
 - By default, upon entry from AttachWait.SNK or Unattached.SNK, VCONN shall not be supplied in the Attached.SNK state.

- **4.5.2.4.5.1#7**
 - 4.26 4.34
 - If Attached.SNK is entered from Attached.SRC as a result of a USB PD PR_Swap, it shall maintain VCONN supply state, whether on or off, and its data role and connections.

- **4.5.2.4.5.1#8**
 - 4.35
 - When the port successfully executes USB PD VCONN_Swap operation and was not sourcing VCONN, it shall start sourcing VCONN within tVCONNON.
<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.5.1#9</td>
<td>4.35</td>
<td>The port shall execute the VCONN_Swap in a make-before-break sequence in order to keep active USB Type-C to USB Type-C cables powered.</td>
</tr>
<tr>
<td>4.5.2.5.1#10</td>
<td>4.35</td>
<td>When the port successfully executes USB PD VCONN_Swap and was sourcing VCONN, it shall stop sourcing VCONN within tVCONNOFF.</td>
</tr>
</tbody>
</table>

4.5.2.5.2 Exiting from Attached.SNK State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.5.2#1</td>
<td>4.8 4.9</td>
<td>A port is not in the process of a USB PD PR_Swap or a USB PD Hard Reset shall transition to Unattached.SNK when Vbus falls below 3.67 V. Note that if Vbus has been adjusted by USB PD to operate above 5V, then the port shall transition to Unattached.SNK when Vbus falls below 80% of the negotiated value.</td>
</tr>
<tr>
<td>4.5.2.5.2#2</td>
<td>4.34</td>
<td>A port transitioning to Unattached.SNK, if supplying VCONN, shall cease to supply it within tVCONNOFF of exiting Attached.SNK.</td>
</tr>
<tr>
<td>4.5.2.5.2#3</td>
<td>4.34</td>
<td>After receiving a USB PD PS_RDY from the original Source during a USB PD PR_Swap the port shall transition directly to the Attached.SRC state (i.e. remove Rd from CC, assert Rp on CC and supply VBUS) but shall maintain its VCONN supply state, whether off or on, and its data role/connections.</td>
</tr>
</tbody>
</table>

4.5.2.6 Unattached.SRC State

4.5.2.6.1 Unattached.SRC Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.6.1#1</td>
<td>4.2 4.4</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>4.5.2.6.1#2</td>
<td>4.2 4.4</td>
<td>The port shall source current on both CC pins independently.</td>
</tr>
<tr>
<td>4.5.2.6.1#3</td>
<td>4.2 4.4</td>
<td>The port shall provide a separate Rp termination on the CC1 and CC2 pins as specified in Table 4-15.</td>
</tr>
</tbody>
</table>

4.5.2.6.2 Exiting from Unattached.SRC State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.6.2#1</td>
<td>4.2 4.4</td>
<td>The port shall transition to AttachWait.SRC when Vbus is vSafe0V and the SRC.Rd state is detected on at least one CC pin.</td>
</tr>
<tr>
<td>4.5.2.6.2#2</td>
<td>4.19</td>
<td>The port shall transition to AttachWait.SRC when Vbus is vSafe0V and the SRC.Ra state is detected on both CC pins.</td>
</tr>
<tr>
<td>4.5.2.6.2#3</td>
<td>4.1</td>
<td>When a port detects SRC.Ra on one CC pin and SRC.Open on the other, the port shall not transition to AttachWait.SRC.</td>
</tr>
<tr>
<td>4.5.2.6.2#4</td>
<td>4.15 4.17</td>
<td>A DRP shall transition to Unattached.SNK within tDRPTransition after dcSRC.DRP * tDRP.</td>
</tr>
<tr>
<td>4.5.2.6.2#5</td>
<td>4.15 4.17</td>
<td>A DRP shall transition to Unattached.SNK if directed.</td>
</tr>
</tbody>
</table>

4.5.2.7 AttachWait.SRC State

4.5.2.7.1 AttachWait.SRC Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.7.1#1</td>
<td>4.2 4.4 4.15</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>4.5.2.7.1#2</td>
<td>4.2 4.4 4.15</td>
<td>The port shall source current on both CC pins independently.</td>
</tr>
</tbody>
</table>
Compliance Rev 0.2080

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.7.1#3</td>
<td>4.2, 4.4, 4.15</td>
<td>The port shall provide a separate Rp termination on the CC1 and CC2 pins as specified in Table 4-15</td>
</tr>
</tbody>
</table>

4.5.2.2.7.2 Exiting from AttachWait.SRC State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.7.2#1</td>
<td>4.2, 4.4, 4.15</td>
<td>The port shall transition to Attached.SRC when Vbus is in vSafe0V and the SRC.Rd state is detected on exactly one of the CC pins for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.7.2#2</td>
<td>4.5</td>
<td>If the port supports Audio Adapter Accessory Mode, it shall transition to AudioAccessory when the SRC.Ra state is detected on both CC pins for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.7.2#3</td>
<td>Not Tested</td>
<td>If the port supports Debug Accessory Mode, it shall transition to UnorientedDebugAccessory.SRC when the SRC.Rd state is detected on both CC pins for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.7.2#4</td>
<td>4.3</td>
<td>A Source shall transition to Unattached.SRC and a DRP to Unattached.SNK when the SRC.Open state is detected on both CC pins.</td>
</tr>
<tr>
<td>4.5.2.2.7.2#5</td>
<td>4.2, 4.15</td>
<td>A Source shall transition to Unattached.SRC and a DRP to Unattached.SNK when the SRC.Open state is detected on one CC pin and the SRC.Rd state is detected on the other CC pin.</td>
</tr>
<tr>
<td>4.5.2.2.7.2#6</td>
<td></td>
<td>A DRP that strongly prefers the Sink role may optionally transition to Try.SNK instead of Attached.SRC when Vbus is at vSafe0V and the SRC.Rd state is detected on exactly one of the CC1 or CC2 pins for at least tCCDebounce.</td>
</tr>
</tbody>
</table>

4.5.2.2.8 Attached.SRC State

4.5.2.2.8.1 Attached.SRC Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.8.1#1</td>
<td>Untestable</td>
<td>If the port needs to determine the orientation of the connector, it shall do so only upon entry to the Attached.SRC state by detecting which pin is in the SRC.Rd state.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#2</td>
<td>4.2, 4.4, 4.15</td>
<td>If the port has entered this state from the AttachWait.SRC state or the Try.SRC state, the SRC.Rd state will be on only one CC pin. The port shall source current on this CC pin and monitor its state.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#3</td>
<td>4.34</td>
<td>If the port has entered this state from the Attached.SNK state as the result of a USB PD PR_Swap, the port shall source current on the connected CC pin and monitor its state.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#4</td>
<td>4.2, 4.4, 4.15</td>
<td>The port shall provide an Rp as specified in Table 4-15.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#5</td>
<td>4.2, 4.4, 4.15</td>
<td>The port shall supply Vbus current at the level it advertises on Rp.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#6</td>
<td>4.2, 4.4, 4.15</td>
<td>The port shall supply Vbus within tVbusON of entering this state, and for as long as it is operating as a power source.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#7</td>
<td>4.2, 4.15, 4.18</td>
<td>The port shall not initiate any USB_PD communications until Vbus reaches vSafe5V.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>4.5.2.2.8.1#8</td>
<td>4.2, 4.26</td>
<td>If the port supports signaling on USB SS pairs, it shall functionally connect the USB SS pairs</td>
</tr>
<tr>
<td>4.5.2.2.8.1#9</td>
<td>4.2</td>
<td>If the port supports signaling on USB SS pairs, it shall either apply Vconn unconditionally to the CC pin not in the SRC.Rd state, or apply Vconn to the CC pin in the SRC.Ra state.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#10</td>
<td>4.2</td>
<td>If the port supplies Vconn, it shall do so within tVconnON</td>
</tr>
<tr>
<td>4.5.2.2.8.1#11</td>
<td>4.34</td>
<td>The port shall not supply Vconn if it has entered this state as a result of a USB PD PR_Swap and was not previously supplying Vconn.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#12</td>
<td>4.27</td>
<td>When the port successfully executes USB PD Vconn_Swap operation and was sourcing Vconn, it shall stop sourcing Vconn within tVconnOFF.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#13</td>
<td>4.27</td>
<td>The port shall execute the Vconn_Swap in a make-before-break sequence in order to keep active USB Type-C to USB Type-C cables powered.</td>
</tr>
<tr>
<td>4.5.2.2.8.1#14</td>
<td>4.27</td>
<td>When the port successfully executes USB PD Vconn_Swap operation and was not sourcing Vconn, it shall start sourcing Vconn within tVconnON.</td>
</tr>
</tbody>
</table>

4.5.2.2.8.2 Exiting From Attached.SRC State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.8.2#1</td>
<td>4.2</td>
<td>A Source shall transition to Unattached.SRC when the SRC.Open state is detected on the monitored CC pin.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#2</td>
<td>4.15</td>
<td>When the SRC.Open state is detected on the monitored CC pin, a DRP shall transition to Unattached.SNK unless it strongly prefers the Source role.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#3</td>
<td>4.15</td>
<td>When the SRC.Open state is detected on the monitored CC pin and a DRP strongly prefers the Source state, it shall transition TryWait.SNK.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#4</td>
<td>4.15</td>
<td>A DRP that would enter Try.SRC from AttachWait.SNK shall enter TryWait.SNK for a Sink detach from Attached.SRC.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#5</td>
<td>4.2, 4.15</td>
<td>A port shall cease to supply VBUS within tVBUSOFF of exiting Attached.SRC.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#6</td>
<td>4.2, 4.7</td>
<td>A port that is supplying VCONN shall cease to supply it within tVCONNOFF of exiting Attached.SRC, unless it is exiting as a result of a USB PD PR_Swap.</td>
</tr>
<tr>
<td>4.5.2.2.8.2#7</td>
<td>4.26</td>
<td>After a USB PD PR_Swap is accepted (Accept message is received or acknowledged), a DRP shall transition directly to the Attached.SNK state (remove Rp from CC, assert Rd on CC and stop supplying VBUS)</td>
</tr>
<tr>
<td>4.5.2.2.8.2#8</td>
<td>4.26</td>
<td>After a USB PD PR_Swap is accepted (Accept message is received or acknowledged), a DRP shall maintain its current data role, connection and VCONN supply state.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.5.2.2.9</td>
<td>Try.SRC State</td>
<td>Note: If both Try.SRC and Try.SNK mechanisms are implemented, only one shall be enabled by the port at a given time.</td>
</tr>
<tr>
<td>4.5.2.2.9.1#1</td>
<td>Try.SRC Requirements</td>
<td>4.17 4.18</td>
</tr>
<tr>
<td>4.5.2.2.9.1#2</td>
<td>4.17 4.18</td>
<td>The port shall source current on both CC pins independently.</td>
</tr>
<tr>
<td>4.5.2.2.9.1#3</td>
<td>4.17 4.18</td>
<td>The port shall provide an Rp as specified in Table 4-15</td>
</tr>
<tr>
<td>4.5.2.2.9.2</td>
<td>Exiting from Try.SRC State</td>
<td>4.18</td>
</tr>
<tr>
<td>4.5.2.2.9.2#2</td>
<td>4.17 4.18</td>
<td>The port shall transition to TryWait.SNK after tDRP Try and the SRC.Rd state has not been detected.</td>
</tr>
<tr>
<td>4.5.2.2.10</td>
<td>TryWait.SNK State</td>
<td>4.18</td>
</tr>
<tr>
<td>4.5.2.2.10.2#1</td>
<td>TryWait.SNK Requirements</td>
<td>4.17</td>
</tr>
<tr>
<td>4.5.2.2.10.2#2</td>
<td>4.17</td>
<td>The port shall transition to Unattached.SNK when the state of both CC pins is SNK.Open for at least tPDDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.10.2#3</td>
<td>4.17</td>
<td>The port shall transition to Attached.SNK after tCCDebounce if or when VBUS is detected.</td>
</tr>
<tr>
<td>4.5.2.2.10.2#4</td>
<td>4.17</td>
<td>The port shall transition to Unattached.SNK when the state of both CC pins is SNK.Open for at least tPDDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.11</td>
<td>Try.SNK State</td>
<td>Note: If both Try SRC and Try.SNK mechanisms are implemented, only one shall be enabled by the port at a given time.</td>
</tr>
<tr>
<td>4.5.2.2.11.1#1</td>
<td>Try.SNK Requirements</td>
<td>4.17</td>
</tr>
<tr>
<td>4.5.2.2.11.1#2</td>
<td>4.17</td>
<td>Both the CC1 and CC2 pins shall be independently terminated to ground through Rd.</td>
</tr>
<tr>
<td>4.5.2.2.11.2#1</td>
<td>Exiting from Try.SNK State</td>
<td>4.17</td>
</tr>
<tr>
<td>4.5.2.2.11.2#2</td>
<td>4.17</td>
<td>The port shall transition to Unattached.SNK when the SNK.Rp state is detected on exactly one of the CC1 or CC2 pins for at least tPDDebounce and Vbus is detected.</td>
</tr>
<tr>
<td>4.5.2.2.11.2#3</td>
<td>4.17</td>
<td>The port shall transition to TryWait.SRC if SNK.Rp state is not detected for tPDDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.11.2#4</td>
<td>4.17</td>
<td>A Sink with Accessory Support shall transition to Unsupported.Accessory if SNK.Rp state is not detected for tDRP TryWait.</td>
</tr>
<tr>
<td>4.5.2.2.12</td>
<td>TryWait.SRC State</td>
<td>4.17</td>
</tr>
<tr>
<td>4.5.2.2.12.1#1</td>
<td>TryWait.SRC Requirements</td>
<td>4.17</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.5.2.12.1#3</td>
<td></td>
<td>The port shall provide a separate Rp termination on the CC1 and CC2 pins as specified in Table 4-15.</td>
</tr>
<tr>
<td>4.5.2.12.2 Exiting from TryWait.SRC State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.12.2#1</td>
<td></td>
<td>The port shall transition to Attached.SRC when Vbus is at vSafe0V and the SRC.Rd state is detected on exactly one of the CC pins for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.12.2#2</td>
<td></td>
<td>The port shall transition to Unattached.SNK after tDRPTry if neither of the CC1 or CC2 pins are in the SRC.Rd state.</td>
</tr>
<tr>
<td>4.5.2.13 Unattached.Accessory State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.13.1 Unattached.Accessory Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.13.1#1</td>
<td>4.1 4.12 4.14</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>4.5.2.13.1#2</td>
<td>4.12 4.14</td>
<td>The port shall source current on both CC pins independently.</td>
</tr>
<tr>
<td>4.5.2.13.1#3</td>
<td>4.12 4.14</td>
<td>The port shall provide an Rp as specified in Table 4-15.</td>
</tr>
<tr>
<td>4.5.2.13.2 Exiting from Unattached.Accessory State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.13.2#1</td>
<td>4.12</td>
<td>The port shall transition to AttachWait.Accessory when the state of both pins is SRC.Ra or SRC.Rd</td>
</tr>
<tr>
<td>4.5.2.13.2#2</td>
<td>4.14</td>
<td>A port that supports Vconn-Powered accessories also shall transition to AttachWait.Accessory when the state of one CC pin is SRC.Ra and the other is SRC.Rd</td>
</tr>
<tr>
<td>4.5.2.13.2#3</td>
<td>4.11</td>
<td>If at least one CC is in SRC.Open, or if SRC.Ra is on one CC pin and SRC.Rd is on the other and the port does not support Vconn-powered accessories, then the port shall transition to Unattached.SNK within tDRPTransition after dcSRC.DRP * tDRP, or if directed.</td>
</tr>
<tr>
<td>4.5.2.14 AttachWait.Accessory State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.14.1 AttachWait.Accessory Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.14.1#1</td>
<td>4.12 4.14 4.19</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>4.5.2.14.1#2</td>
<td>4.12 4.14 4.19</td>
<td>The port shall source current on both CC pins independently.</td>
</tr>
<tr>
<td>4.5.2.14.1#3</td>
<td>4.12 4.14 4.19</td>
<td>The port shall provide an Rp as specified in Table 4-15.</td>
</tr>
<tr>
<td>4.5.2.14.2 Exiting from AttachWait.Accessory State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.5.2.2.14.2#1</td>
<td>4.12, 4.19</td>
<td>If the port supports Audio Adapter Accessory Mode, it shall transition to AudioAccessory when the state of both CC pins is SRC.Ra for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.14.2#2</td>
<td>Not Tested</td>
<td>If the port supports Debug Accessory Mode, it shall transition to DebugAccessory when the state of both CC pins is SRC.Rd for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.14.2#3</td>
<td>4.14</td>
<td>The port shall transition to Unattached.SNK when the state of either CC pin is SRC.Open for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.14.2#4</td>
<td>4.14</td>
<td>If the port supports VCONN-powered accessories, it shall transition to PoweredAccessory state if the state of one to its CC pins is SRC.Rd and the state of the other CC pin is SRC.Ra concurrently for at least tCCDebounce.</td>
</tr>
</tbody>
</table>

4.5.2.2.15 AudioAccessory State

4.5.2.2.15.1 AudioAccessory Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.15.1#1</td>
<td>4.5, 4.12, 4.19</td>
<td>The port shall reconfigure its pins as detailed in Appendix A.</td>
</tr>
<tr>
<td>4.5.2.2.15.1#2</td>
<td>4.5, 4.12, 4.19</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>4.5.2.2.15.1#3</td>
<td>4.12, 4.19</td>
<td>A port that sinks current from the audio accessory over VBUS shall not draw more than 500 mA.</td>
</tr>
<tr>
<td>4.5.2.2.15.1#4</td>
<td>4.5, 4.12, 4.19</td>
<td>The port shall provide an Rp as specified in Table 4-15.</td>
</tr>
<tr>
<td>4.5.2.2.15.1#5</td>
<td>4.5, 4.19</td>
<td>The port shall source current on at least one of the CC pins and monitor to detect when the CC pin state is no longer SRC.Ra.</td>
</tr>
<tr>
<td>4.5.2.2.15.1#6</td>
<td></td>
<td>If the port sources and monitors only one CC pin, then it shall ensure that the termination on the unmonitored CC pin does not affect the monitored signal when the port is connected to an Audio Accessory that may short both CC pins together.</td>
</tr>
</tbody>
</table>

4.5.2.2.15.2 Exiting from AudioAccessory State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.15.2#1</td>
<td>4.12, 4.19</td>
<td>If the port is a Sink, the port shall transition to Unattached.SNK when the state of the monitored CC pin is SRC.Open for at least tCCDebounce.</td>
</tr>
<tr>
<td>4.5.2.2.15.2#2</td>
<td>4.5</td>
<td>If the port is a Source or DRP, the port shall transition to Unattached.SRC when the SRC.Open state is detected on the monitored CC pin for at least tCCDebounce.</td>
</tr>
</tbody>
</table>

4.5.2.2.16 DebugAccessory State

4.5.2.2.16.1 DebugAccessory Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.2.16.1#1</td>
<td>Not Tested</td>
<td>This mode is for debug only and shall not be used for communicating with commercial products.</td>
</tr>
<tr>
<td>4.5.2.2.16.1#2</td>
<td>4.6, 4.13</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2.16.1#3</td>
<td>Not Tested</td>
<td>The port shall drive Rp as specified in Table 4-13.</td>
</tr>
<tr>
<td>4.5.2.16.1#4</td>
<td>Not Tested</td>
<td>The port shall source current on at least one of the CC pins and monitor to detect when the CC pin state is no longer SRC.Rd.</td>
</tr>
<tr>
<td>4.5.2.16.1#5</td>
<td>Not Tested</td>
<td>If the port monitors only one CC pin, it shall source current on the monitored pin and may source current or not on the unmonitored pin.</td>
</tr>
</tbody>
</table>

4.5.2.16.3 Exiting from DebugAccessory State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.16.2#1</td>
<td>Not Tested</td>
<td>If the port is a Sink or DRP, the port shall transition to Unattached.SNK when the SRC.Open state is detected on the monitored CC pin(s).</td>
</tr>
<tr>
<td>4.5.2.16.2#2</td>
<td>Not Tested</td>
<td>If the port is a Source, the port shall transition to Unattached.SRC when the SRC.Open state is detected on the monitored CC pin(s).</td>
</tr>
</tbody>
</table>

4.5.2.19 PoweredAccessory State

4.5.2.19.1 PoweredAccessory Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.19.1#1</td>
<td>Untestable</td>
<td>If the port needs to determine the orientation of the connector, it shall do so only upon entry to the PoweredAccessory state by detecting which CC pin is connected through the cable (in the SRC.Rd state).</td>
</tr>
<tr>
<td>4.5.2.19.1#2</td>
<td>4.14</td>
<td>The port shall advertise either 1.5 A or 3.0 A (see Table 4-13) on the connected CC pin and monitor its state.</td>
</tr>
<tr>
<td>4.5.2.19.1#3</td>
<td>4.14</td>
<td>The port shall supply VCONN (2.7 V minimum) on the unused CC pin within VCONN-On-Pa of entering the PoweredAccessory state.</td>
</tr>
<tr>
<td>4.5.2.19.1#4</td>
<td>4.14</td>
<td>The port shall not drive VBUS.</td>
</tr>
<tr>
<td>4.5.2.19.1#5</td>
<td>4.14</td>
<td>When the port initially enters the PoweredAccessory state it shall operate as a DFP.</td>
</tr>
<tr>
<td>4.5.2.19.1#6</td>
<td>4.14</td>
<td>The port shall use USB Power Delivery Structured Vendor Defined Messages (Structured VDMs) to identify this accessory and enter an Alternate Mode.</td>
</tr>
</tbody>
</table>

4.5.2.19.2 Exiting from PoweredAccessory State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.19.2#1</td>
<td>4.14</td>
<td>The port shall transition to Unattached.SNK when the SRC.Open state is detected on the monitored CC pin.</td>
</tr>
<tr>
<td>4.5.2.19.2#2</td>
<td>4.14</td>
<td>The port shall transition to Unattached.SNK if the attached device is not a VCONN-Powered Accessory.</td>
</tr>
</tbody>
</table>
4.5.2.2.2 Unsupported.Accessory State

4.5.2.2.2.1 Unsupported.Accessory Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.19.2#3</td>
<td>4.14</td>
<td>The port shall transition to Unsupported.Accessory if it does not successfully enter an Alternate Mode within tAMETimeout (see Section 5.1).</td>
</tr>
<tr>
<td>4.5.2.19.2#4</td>
<td>4.14</td>
<td>The port shall cease to supply VCONN within tV康OFF of exiting the Powered/Accessory state.</td>
</tr>
</tbody>
</table>

4.5.2.2.2.2 Exiting from Unsupported.Accessory

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.20.2#1</td>
<td>4.14</td>
<td>The port shall transition to Unattached.SNK when the SRC.Open state is detected on the monitored CC pin.</td>
</tr>
</tbody>
</table>

4.5.2.3 UFP Power Sub-State Requirements

4.5.2.3.1 PowerDefault.UFP Sub-State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.3.1.1#1</td>
<td>4.31</td>
<td>Only one CC pin shall be in the SRC.Rd state.</td>
</tr>
<tr>
<td>4.5.2.3.1.1#2</td>
<td>4.31</td>
<td>The port shall advertise Default USB Power (see Table 4-13) on the connected CC pin and monitor its voltage.</td>
</tr>
<tr>
<td>4.5.2.3.1.1#3</td>
<td>4.31</td>
<td>The port shall not drive VBUS or VCONN.</td>
</tr>
</tbody>
</table>

4.5.2.3.1.2 Exiting from PowerDefault.UFP

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.3.1.2#1</td>
<td>4.31</td>
<td>The port shall transition to Unattached.SNK when the SRC.Open state is detected on the monitored CC pin.</td>
</tr>
</tbody>
</table>

4.5.2.3.1.3 Power1.5.UFP Sub-State

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.3.1.3#1</td>
<td>4.31</td>
<td>The port shall draw no more than the default USB power from VBUS.</td>
</tr>
<tr>
<td>4.5.2.3.1.3#2</td>
<td>4.31</td>
<td>If the port wants to consume more than the default USB power, it shall monitor vRd to determine if more current is available from the Source.</td>
</tr>
</tbody>
</table>

4.5.2.3.1.4 Exiting from Power1.5.UFP

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.3.1.4#1</td>
<td>4.31</td>
<td>For any change on CC indicating a change in allowable power, the port shall not transition until the new vRd on CC has been stable for tPDDebounce.</td>
</tr>
<tr>
<td>4.5.2.3.1.4#2</td>
<td>4.31</td>
<td>For a vRd in the vRd-1.5 range, the port shall transition to the Power1.5.SNK Sub-State.</td>
</tr>
<tr>
<td>4.5.2.3.1.4#3</td>
<td>4.31</td>
<td>For a vRd in the vRd-3.0 range, the port shall transition to the Power3.0.SNK Sub-State.</td>
</tr>
</tbody>
</table>

4.5.2.3.2 Power 1.5.UFP Sub-State

4.5.2.3.2.1 Power 1.5.UFP Sub-State Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2.3.2.1#1</td>
<td>4.31</td>
<td>The port shall draw no more than the 1.5 A from VBUS.</td>
</tr>
<tr>
<td>4.5.2.3.2.1#2</td>
<td>4.31</td>
<td>The port shall monitor vRd while it is in this sub-state.</td>
</tr>
</tbody>
</table>

4.5.2.3.2.2 Exiting from Power 1.5.UFP Sub-State
## Assertion #	Test Name	Assertion Description
4.5.2.3.2.2#1 | 4.31 | For any change on CC indicating a change in allowable power, the port shall not transition until the new vRd on CC has been stable for tPDDebounce.

4.5.2.3.2.2#2 | 4.31 | For a vRd in the vRd-USB range, the port shall transition to the PowerDefault.SNK Sub-State and reduce its power consumption to the new range within tSinkAdj.

4.5.2.3.2.2#3 | 4.31 | For a vRd in the vRd-3.0 range, the port shall transition to the Power3.0.SNK Sub-State.

4.5.2.3.3 Power3.0.UFP Sub-State

4.5.2.3.3.1 Power3.0.UFP Requirements

4.5.2.3.3.1#1 | 4.31 | The port shall draw no more than the 3.0 A from VBUS.

4.5.2.3.3.1#2 | 4.31 | The port shall monitor vRd while it is in this sub-state.

4.5.2.3.3.2 Power3.0.UFP Requirements

4.5.2.3.3.2#1 | 4.31 | For any change on CC indicating a change in allowable power, the port shall not transition until the new vRd on CC has been stable for tPDDebounce.

4.5.2.3.3.2#2 | 4.31 | For a vRd in the vRd-USB range, the port shall transition to the PowerDefault.SNK Sub-State and reduce its power consumption to the new range within tSinkAdj.

4.5.2.3.3.2#3 | 4.31 | For a vRd in the vRd-1.5 range, the port shall transition to the Power1.5.SNK Sub-State and reduce its power consumption to the new range within tSinkAdj.

4.5.3.2.2 Legacy Host Port to UFP Behavior

4.5.3.2.2#1 | 4.29 | The value of Rp shall indicate an advertisement of Default USB Power (See Table 4-10), even though the cable itself can carry 3 A.

4.5.3.2.4 Legacy Host Port to DRP Behavior

4.5.3.2.4#1 | 4.29 | The value of Rp shall indicate an advertisement of Default USB Power (See Table 4-10), even though the cable itself can carry 3 A.

4.6 Power

4.6#1 | 4.25 | All USB Type-C-based devices shall support USB Type-C Current and may support other USB-defined methods for power.

4.6#2 | 4.32 | The following order of precedence of power negotiation shall be followed: USB BC 1.2 supersedes the USB 2.0 and USB 3.1 specifications, USB Type-C Current at 1.5 A and 3.0 A supersedes USB BC 1.2, and USB Power Delivery supersedes USB Type-C Current.

4.6#3 | 4.32 | Once the PD mode (e.g. a power contract has been negotiated) has been entered, the device shall abide by that power contract ignoring any other previously made or offered by the USB Type-C Current, USB BC 1.2 or USB 2.0 and USB 3.1 specifications.
Compliance Rev 0.2080

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6#4</td>
<td>4.32</td>
<td>When the PD mode is exited, the device shall fallback in order to the USB Type-C Current, USB BC 1.2 or USB 2.0 and USB 3.1 specification power levels.</td>
</tr>
<tr>
<td>4.6#5</td>
<td>4.1</td>
<td>All USB Type-C ports shall tolerate being connected to USB power source supplying default USB power, e.g. a host being connected to a legacy USB charger that always supplies VBUS.</td>
</tr>
</tbody>
</table>

4.6.1 Power Requirements during USB Suspend

4.6.1.1 VBUS Requirements during USB Suspend

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1.1#1</td>
<td>4.33</td>
<td>USB suspend power rules shall apply when the USB Type-C Current is at the Default USB Power level or when USB PD is being used and the Suspend bit is set appropriately.</td>
</tr>
</tbody>
</table>

4.6.1.2 VCONN Requirements during USB Suspend

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1.2#1</td>
<td>4.24</td>
<td>If the DFP supplies VBUS power during USB suspend, it shall also supply at least 70 mW to VCONN.</td>
</tr>
<tr>
<td>4.6.1.2#2</td>
<td>CabCon</td>
<td>Electronically marked cables shall draw no more than 70 mW from VCONN during USB suspend.</td>
</tr>
</tbody>
</table>

4.6.2 VBUS Power Provided Over a USB Type-C Cable

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2#1</td>
<td>CabCon PD</td>
<td>USB Power Delivery is an optional capability that is intended to work over un-modified USB Type-C to USB Type-C cables, therefore any USB Type-C cable assembly that incorporates electronics that gets it power from VBUS shall be tolerant up to 20 V.</td>
</tr>
</tbody>
</table>

4.6.2.1 USB Type-C Current

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2.1#1</td>
<td>4.31</td>
<td>A UFP that takes advantage of the additional current offered (e.g., 1.5 A or 3.0 A) shall monitor the CC pins and shall adjust its current consumption within SinkAdj to remain within the value advertised by the DFP.</td>
</tr>
<tr>
<td>4.6.2.1#2</td>
<td>4.32</td>
<td>While a USB PD contract is in place, a UFP is not required to monitor USB Type-C Current advertisements and shall not respond to USB Type-C Current advertisements.</td>
</tr>
<tr>
<td>4.6.2.1#3</td>
<td>4.2</td>
<td>The DFP shall source VBUS to the UFP within tVBUSON.</td>
</tr>
<tr>
<td>4.6.2.1#4</td>
<td>4.25</td>
<td>VBUS shall be in the specified voltage range at the advertised current.</td>
</tr>
<tr>
<td>4.6.2.1#5</td>
<td>Not Tested</td>
<td>A port sourcing VBUS shall protect itself from a sink that draws current in excess of the port’s USB Type-C Current advertisement.</td>
</tr>
</tbody>
</table>
Assertion Description

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2.1#6</td>
<td>4.31</td>
<td>If the UFP wants to consume more than the default USB current, it shall track vRd to determine the maximum current it may draw.</td>
</tr>
<tr>
<td>4.6.2.2 USB Battery Charging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2.2#1</td>
<td>4.25</td>
<td>USB Type-C-based BC 1.2 chargers that are capable of supplying at least 1.5 A shall advertise USB Type-C Current at the 1.5 A level, otherwise the charger shall advertise USB Type-C Current at the Default USB Power level.</td>
</tr>
<tr>
<td>4.6.2.3 Proprietary Power Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2.3#1</td>
<td>4.25</td>
<td>A proprietary power source (i.e., battery charger) with a USB Type-C-captive cable or a USB Type-C receptacle that is capable of supplying at least 1.5 A and less than 3.0 A shall advertise USB Type-C Current at least at the 1.5 A level.</td>
</tr>
<tr>
<td>4.6.2.3#2</td>
<td>4.25</td>
<td>A proprietary power source with a USB Type-C-captive cable or a USB Type-C receptacle that is capable of supplying at least 3.0 A shall advertise USB Type-C Current at least at the 3.0 A level.</td>
</tr>
<tr>
<td>4.6.2.4 USB Power Delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2.4#1</td>
<td>4.2</td>
<td>When USB PD is implemented, USB PD Bi-phase Mark Coded (BMC) carried on the CC wire shall be used for USB PD communications between USB Type-C ports.</td>
</tr>
<tr>
<td>4.6.2.4#2</td>
<td>4.2</td>
<td>At attach, VBUS shall be operationally stable prior to initiating USB PD communications.</td>
</tr>
<tr>
<td>4.6.2.4#3</td>
<td>4.25</td>
<td>While a USB PD contract is in place, the provider shall advertise a USB Type-C Current of either 1.5 A or 3.0 A.</td>
</tr>
<tr>
<td>4.6.3 Supporting USB PD BFSK in Addition to USB PD BMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.3#1</td>
<td>Not Tested</td>
<td>USB Type-C-based products that support USB PD BFSK and request a voltage greater than 5V shall supply protect the CC inputs from termination voltages higher than 5V as some adapters may present an Rp pulled up to VBUS that may be as high as 20V.</td>
</tr>
<tr>
<td>4.6.3#2</td>
<td>Not Tested</td>
<td>USB PD BFSK shall only be used if USB PD BMC fails to establish PD communication, i.e., fails to receive a USB PD GoodCRC message in response to a USB PD Capabilities message following two hard resets.</td>
</tr>
<tr>
<td>4.6.3#3</td>
<td>Not Tested</td>
<td>USB Type-C-based UFPs that support USB PD BFSK and want to request more than 1.5 A shall supply VCONN and confirm that the cable is electronically marked and capable of the desired current level (see Section 5.2.2).</td>
</tr>
<tr>
<td>4.7 USB Hubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7#1</td>
<td>4.39</td>
<td>USB hubs implemented with one or more USB Type-C connectors shall comply with the USB 3.1 Specification.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.7#2</td>
<td>4.40</td>
<td>USB hubs shall have one UFP that may be a Charging UFP (See Section 4.8.3).</td>
</tr>
<tr>
<td>4.7#3</td>
<td>IOP</td>
<td>The hub shall clearly identify to the user its UFP.</td>
</tr>
<tr>
<td>4.7#4</td>
<td>4.40</td>
<td>USB hub’s DFPs shall not have DRP capability.</td>
</tr>
<tr>
<td>4.7#5</td>
<td>4.40</td>
<td>CC pins are used for port-to-port connections and shall be supported on all USB Type-C connections on the hub.</td>
</tr>
<tr>
<td>4.7#6</td>
<td>4.40</td>
<td>USB hub ports shall not implement or pass-through Alternate or Accessory Modes.</td>
</tr>
<tr>
<td>4.7#7</td>
<td>4.40</td>
<td>SBU pins shall not be connected (zSBUTermination) on any USB hub port.</td>
</tr>
<tr>
<td>4.7#8</td>
<td>4.25</td>
<td>The USB hub’s DFPs shall support power source requirements for a DFP.</td>
</tr>
</tbody>
</table>

4.8 Chargers

4.8.1 DFP as a Power Source

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1#1</td>
<td>4.25</td>
<td>When a charger with a USB Type-C receptacle or a USB Type-C captive cable, it shall follow all the applicable requirements.</td>
</tr>
<tr>
<td>4.8.1#2</td>
<td>4.25</td>
<td>A DFP shall expose its power capabilities using the USB Type-C Current method and it may additionally support other USB-standard methods (USB BC 1.2 or USB-PD).</td>
</tr>
<tr>
<td>4.8.1#3</td>
<td>4.25</td>
<td>A USB Type-C power provider advertising its current capability using USB BC 1.2 shall meet the requirements in Section 4.6.2.2 regarding USB Type-C Current advertisement.</td>
</tr>
<tr>
<td>4.8.1#4</td>
<td>4.25</td>
<td>A USB Type-C power provider that has negotiated a USB-PD contract shall meet the requirements in Section 4.6.2.4 regarding USB Type-C Current advertisement.</td>
</tr>
<tr>
<td>4.8.1#5</td>
<td>Untestable</td>
<td>If a USB Type-C power provider is capable of supplying a voltage greater than default VBUS, it shall fully conform to the USB-PD specification, and shall negotiate its power contracts using only USB-PD.</td>
</tr>
<tr>
<td>4.8.1#6</td>
<td>TD 4.15</td>
<td>If a USB Type-C power provider is capable of reversing source and sink power roles, it shall fully conform to the USB-PD specification, and shall negotiate its power contracts using only USB-PD.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.8.1#7</td>
<td>Not Tested</td>
<td>If a USB Type-C power provider is capable of supplying a current greater than 3.0 A, it shall use the USB-PD Discovery Identity to determine the current carrying capacity of the cable.</td>
</tr>
</tbody>
</table>

4.8.1.1 Chargers with USB Type-C Receptacles

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1.1#2</td>
<td>4.1</td>
<td>A charger with a USB Type-C receptacle (DFP) shall only apply power to VBUS when it detects a UFP is attached and shall remove power from VBUS when it detects the UFP is detached (vOPEN).</td>
</tr>
<tr>
<td>4.8.1.1#3</td>
<td>4.25</td>
<td>A charger with a USB Type-C receptacle shall not advertise current exceeding 3.0 A except when it uses the USB-PD Discover Identity mechanism to determine the cable’s actual current carrying capability and then it shall limit the advertised current accordingly.</td>
</tr>
</tbody>
</table>

4.8.1.2 Chargers with USB Type-C Captive Cables

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1.2#1</td>
<td>4.1</td>
<td>A charger with a USB Type-C captive cable that supports USB PD shall only apply power to VBUS when it detects a UFP is attached and shall remove power from VBUS when it detects the UFP is detached (vOPEN).</td>
</tr>
<tr>
<td>4.8.1.2#2</td>
<td>PD/CabCon/ IOP</td>
<td>A charger with a USB Type-C captive cable shall limit its current advertisement so as not to exceed the current capability of the cable (up to 5 A).</td>
</tr>
</tbody>
</table>

4.8.2 Non-USB Charging Methods

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2#1</td>
<td>4.25</td>
<td>When implemented, a proprietary charging method shall only be used to establish identify and/or direct a current level at default VBUS voltage in a manner not defined by the USB methods.</td>
</tr>
<tr>
<td>4.8.2#2</td>
<td>Untestable</td>
<td>When implemented, a proprietary charging method shall only define the current level and shall not change the voltage delivered on VBUS.</td>
</tr>
<tr>
<td>4.8.2#3</td>
<td>Untestable</td>
<td>When implemented, a proprietary charging method shall not alter the DFP's role to source VBUS or the UFP's role to sink VBUS.</td>
</tr>
<tr>
<td>4.8.2#4</td>
<td>Untestable</td>
<td>A product with a USB Type-C connector that sinks power may support proprietary charging methods, these products shall not support methods that redefine VBUS voltage beyond what is defined by the USB 2.0 and USB 3.1 specifications.</td>
</tr>
</tbody>
</table>

4.8.3 Sinking UFP

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.3#1</td>
<td>4.15</td>
<td>The Sinking DFP shall follow the rules for a DRP (See Section 4.5.1.4 and Figure 4-15).</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4.8.3#2</td>
<td>4.15 4.17 4.18</td>
<td>The sinking DFP shall support USB PD and shall support the DR_Swap command.</td>
</tr>
</tbody>
</table>

4.8.4 Charging UFP

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.4#1</td>
<td>4.15 4.17 4.18</td>
<td>The Charging UFP shall follow the rules for a DRP (See Section 4.5.1.4 and Figure 4-15).</td>
</tr>
<tr>
<td>4.8.4#2</td>
<td>4.25</td>
<td>The Charging UFP shall also follow the requirements for the DFP as Power Source (See Section 4.8.1).</td>
</tr>
<tr>
<td>4.8.4#3</td>
<td>4.22</td>
<td>The Charging UFP shall support USB PD and shall support the DR_Swap command.</td>
</tr>
</tbody>
</table>

4.8.5 Charging a System with a Dead Battery

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.5#1</td>
<td>4.37</td>
<td>A system that supports being charged by USB whose battery is dead shall apply Rd to both CC1 and CC2 and follow all UFP rules.</td>
</tr>
</tbody>
</table>

4.9 Electronically Marked Cables

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9#1</td>
<td>PD</td>
<td>All USB Full-Featured Type-C cables shall be electronically marked.</td>
</tr>
<tr>
<td>4.9#2</td>
<td>PD</td>
<td>Electronically marked cables shall support USB Power Delivery Structured VDM Discover Identity command directed to SOP'.</td>
</tr>
<tr>
<td>4.9#3</td>
<td>PD</td>
<td>After an explicit USB PD contract has been negotiated, only the DFP shall communicate with SOP'.</td>
</tr>
<tr>
<td>4.9#4</td>
<td>PD</td>
<td>Electronically marked cables that do not incorporate data bus signal conditioning circuits shall consume no more than 70 mW from VCONN.</td>
</tr>
<tr>
<td>4.9#5</td>
<td>PD</td>
<td>During USB suspend, electronically marked cables shall not draw more than 7.5 mA from VCONN, see Section 4.6.1.2.</td>
</tr>
<tr>
<td>4.9#6</td>
<td>PD</td>
<td>The isolation elements (Iso) shall prevent VCONN from traversing end-to-end through the cable.</td>
</tr>
<tr>
<td>4.9#7</td>
<td>PD</td>
<td>Active cables shall not draw more than 1 W from VCONN, see Section 4.4.3.</td>
</tr>
<tr>
<td>4.9#8</td>
<td>PD</td>
<td>When VCONN is not present, a powered cable shall not interfere with normal CC operation including UFP detection, current advertisement and USB PD operation.</td>
</tr>
</tbody>
</table>

4.10 VCONN-Powered Accessories

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10#1</td>
<td>4.23</td>
<td>When operating in the UFP role and when VBUS is not present, VCONN-powered accessories shall treat the application of VCONN as an attach signal, and shall respond to USB Power Delivery messages.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.10#2</td>
<td>4.23</td>
<td>When powered by only VCONN, a VCONN-powered accessory shall negotiate an Alternate Mode.</td>
</tr>
<tr>
<td>4.10#3</td>
<td>4.23</td>
<td>VCONN-powered accessories shall be able to operate over a range of 2.7 V to 5.5 V on VCONN.</td>
</tr>
<tr>
<td>4.10#4</td>
<td>4.23</td>
<td>The removal of VCONN when VBUS is not present shall be treated as a detach event.</td>
</tr>
</tbody>
</table>

4.11 Parameter Values

4.11.1 Termination Parameters

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.1#1</td>
<td>BC</td>
<td>Table 4-13 provides the values that shall be used for the DFP’s Rp or current source.</td>
</tr>
<tr>
<td>4.11.1#2</td>
<td>BC</td>
<td>Other pull-up voltages shall be allowed if they remain less than 5.5 V and fall within the correct voltage ranges on the UFP side – see Table 4-21, Table 4-22 and Table 4-23</td>
</tr>
<tr>
<td>4.11.1#3</td>
<td>CabCon</td>
<td>For Rp when implemented in the USB Type-C plug on a USB Type-C to USB 3.1 Standard-A Cable Assembly, a USB Type-C to USB 2.0 Standard-A Cable Assembly, a USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly or a USB Type-C captive cable connected to a USB host, a value of 56 kOhms ± 5% shall be used, in order to provide tolerance to IR drop on VBUS and GND in the cable assembly.</td>
</tr>
<tr>
<td>4.11.1#4</td>
<td>BC</td>
<td>Transitions between Rd implementations that do not exceed tCCDebounce shall not be interpreted as exceeding the wider Rd range.</td>
</tr>
<tr>
<td>4.11.1#5</td>
<td>BC</td>
<td>Table 4-14 provides the methods and values that shall be used for the UFP’s Rd implementation.</td>
</tr>
</tbody>
</table>

4.11.2 Timing Parameters

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.2#1</td>
<td>BC</td>
<td>Table 4-18 provides the timing values that shall be met for delivering power over VBUS and VCONN.</td>
</tr>
<tr>
<td>4.11.2#2</td>
<td>BC</td>
<td>Table 4-19 provides the timing values that shall be met for DRPs.</td>
</tr>
<tr>
<td>4.11.2#3</td>
<td>BC</td>
<td>tDRP is the period a DRP shall complete a Source to Sink and back advertisement.</td>
</tr>
<tr>
<td>4.11.2#4</td>
<td>BC</td>
<td>dcDFP.DRP is the percent of time that a DRP shall advertise Source during tDRP.</td>
</tr>
<tr>
<td>4.11.2#5</td>
<td>BC</td>
<td>tDRPTransition is the time a DRP shall complete transitions between Source and Sink roles during role resolution.</td>
</tr>
<tr>
<td>4.11.2#6</td>
<td>BC</td>
<td>For CC connections, tCCDebounce is the time a port shall wait before it can determine it is attached.</td>
</tr>
<tr>
<td>4.11.2#7</td>
<td>BC</td>
<td>For CC connections, tPDDebounce is the time a port shall wait before it can determine it is either detached or there has been a change in the USB Type-C current.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4.11.2#8</td>
<td>BC</td>
<td>For CC connections, tErrorRecovery is the time a self-powered port shall remain in the ErrorRecovery state.</td>
</tr>
</tbody>
</table>

4.11.3 Voltage Parameters

4.11.3#1	BC	Table 4-21, Table 4-22 and Table 4-23 provide the CC voltage values that a Source shall use to detect what is attached based on the USB Type-C Current advertisement (Default USB, 1.5 A @ 5 V, or 3.0 A @ 5 V) that the Source is offering.
4.11.3#2	BC	Table 4-24 provides the CC voltage values that shall be detected across a Sink’s Rd for a Sink that does not support higher than default USB Type-C Current Source advertisements.
4.11.3#3	BC	Table 4-25 provides the CC voltage values that shall be detected across a Sink’s Rd for a Sink that implements detection of higher than default USB Type-C Current Source advertisements.

5 Functional Extensions

5.1 Alternate Modes

5.1#1	4.28 4.36	All hosts and devices (except chargers) using a USB Type-C receptacle shall expose a USB interface.
5.1#2	4.28 4.36	When a host or device supports Alternate Modes, the host and device shall use USB Power Delivery Structured Vendor Defined Messages (Structured VDMs) to discover, configure and enter/exit modes to enable Alternate Modes.
5.1#3	4.28 4.36	When a host or device supports Alternate Modes, where no equivalent USB functionality is implemented, the device shall provide a USB interface exposing a USB Billboard Device Class used to provide information needed to identify the device.
5.1#4	4.40	As Alternate Modes do not traverse the USB hub topology, they shall only be used between a directly connected host and device.

5.1.1 Alternate Mode Architecture

| 5.1.1#1 | Untestable | Only Structured VDMs shall be used to alter the USB functionality or reconfigure the pins the USB Type-C Connector exposes. |

5.1.2 Alternate Mode Requirements

<p>| 5.1.2#1 | 4.28 4.36 | The host and device shall negotiate a USB PD Explicit Contract before Structured VDMs may be used to discover or enter an Alternate Mode. |</p>
<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2#2</td>
<td>4.36</td>
<td>The ACK shall be sent after switching to the Alternate Mode has been completed by the UFP for Enter Mode and Exit Mode requests.</td>
</tr>
<tr>
<td>5.1.2#3</td>
<td>4.36</td>
<td>If a device fails to successfully enter an Alternate Mode within tAMETimeout then the device shall minimally expose a USB 2.0 interface (USB Billboard Device Class) that is powered by VBUS.</td>
</tr>
<tr>
<td>5.1.2#4</td>
<td>4.36</td>
<td>If the device enters the mode after a host sends Enter Mode, it shall respond with an ACK and discontinue exposing the USB Billboard Device Class interface.</td>
</tr>
<tr>
<td>5.1.2#5</td>
<td>PD</td>
<td>The current supplied over VCONN may be redefined by a specific Alternate Mode but the power shall not exceed the current rating of the pin (See Section 3.7.7.4).</td>
</tr>
</tbody>
</table>

5.1.2.1 Alternate Mode Pin Reassignment

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2.1#1</td>
<td>4.28</td>
<td>Figure 5-1 illustrates the only pins that shall be available for functional reconfiguration in a full-featured cable.</td>
</tr>
<tr>
<td>5.1.2.1#2</td>
<td>4.28</td>
<td>The pins highlighted in yellow (Fig 5-1) are the only pins that shall be reconfigured.</td>
</tr>
<tr>
<td>5.1.2.1#3</td>
<td>4.28</td>
<td>Figure 5-2 illustrates the only pins that shall be available for functional reconfiguration in direct connect applications such as a cradle dock, captive cable or a detachable notebook.</td>
</tr>
<tr>
<td>5.1.2.1#4</td>
<td>4.28</td>
<td>The pins highlighted in yellow (Fig 5-2) are the only pins that shall be reconfigured.</td>
</tr>
</tbody>
</table>

5.1.2.2 Alternate Mode Electrical Requirements

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2.2#1</td>
<td>4.28</td>
<td>Signaling during the use of Alternate Modes shall comply with all relevant cable assembly, adapter assembly and electrical requirements of Chapter 3.</td>
</tr>
<tr>
<td>5.1.2.2#2</td>
<td>4.28</td>
<td>When operating in an Alternate Mode and pin pairs A2, A3 (TX1) and B2, B3 (TX2) are used, these shall be AC coupled in or before the plug.</td>
</tr>
<tr>
<td>5.1.2.2#3</td>
<td>4.28</td>
<td>Alternate Mode signals being received at the USB Type-C receptacle shall not exceed the value specified for VTX-DIFF-PP in Table 6-17 of the USB 3.1 specification.</td>
</tr>
<tr>
<td>5.1.2.2#4</td>
<td>4.28</td>
<td>When in an Alternate Mode, activity on the SBU lines shall not interfere with USB PD BMC communications or interfere with detach detection.</td>
</tr>
<tr>
<td>5.1.2.2#5</td>
<td>4.28</td>
<td>SBU1/2 and SSTX/SSRX must transition to the USB Safe State before entering to or exiting from an Alternate Mode.</td>
</tr>
</tbody>
</table>
Compliance Rev 0.2080

Assertion # Test Name Assertion Description
5.1.2.2#6 4.28 The DFP and UFP shall provide a discharge path to ground in USB Safe State when a connection to the USB Type-C receptacle is present.

5.1.3 Parameter Values

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3#1</td>
<td>4.28</td>
<td>While operating in an Alternate Mode, the signaling shall not cause noise ingestion onto USB signals operating concurrently that exceeds the Vnoise parameters given in Table 5-3.</td>
</tr>
</tbody>
</table>

5.2 Managed Active Cables

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2#1</td>
<td>CabCon</td>
<td>Active cables that require configuration (managed active cable) shall use USB Power Delivery Structured VDMs to discover and configure the cable.</td>
</tr>
<tr>
<td>5.2.1#1</td>
<td>PD/CabCon</td>
<td>Figure 5-4 illustrates the process that shall be followed to assign SOP' and SOP" to the ends attached to the DFP and UFP, respectively, at power on.</td>
</tr>
<tr>
<td>5.2.1#2</td>
<td>PD/CabCon</td>
<td>When VCONN is removed, the plug’s local VCONN shall discharge to below its SOP’ detection threshold within 20 ms.</td>
</tr>
<tr>
<td>5.2.1#3</td>
<td>PD/CabCon</td>
<td>A managed active cable shall assure that the two USB PD controllers are uniquely assigned via the mechanism described here, one as SOP’ and the other as SOP”.</td>
</tr>
<tr>
<td>5.2.1#4</td>
<td>IOP</td>
<td>Managed active USB Type-C to USB Type-C cables shall by default support USB operation.</td>
</tr>
<tr>
<td>5.2.1#5</td>
<td>IOP</td>
<td>Multi-modal cables (e.g., an active cable that supports an Alternate Mode in addition to USB SuperSpeed) that use the TX/RX signal pairs shall minimally support USB 3.1 Gen 1 operation.</td>
</tr>
<tr>
<td>5.2.1#6</td>
<td>CabCon</td>
<td>On a managed active cable the isolation elements (Iso) shall prevent VCONN from traversing end-to-end through the cable.</td>
</tr>
</tbody>
</table>

5.2.1.1 Parameter Values

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1.1#1</td>
<td>PD/CabCon</td>
<td>tVCONNStable is the time between the application of VCONN until SOP’ and SOP” shall be ready for communication.</td>
</tr>
</tbody>
</table>

5.2.2 Cable Message Structure

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2#1</td>
<td>PD/CabCon</td>
<td>USB PD Structured VDMs shall be used to identify and manage active cables.</td>
</tr>
<tr>
<td>5.2.2#2</td>
<td>PD/CabCon</td>
<td>In all cases, Structured VDMs shall only use SOP’ and SOP”.</td>
</tr>
<tr>
<td>5.2.2#3</td>
<td>PD/CabCon</td>
<td>Structured VDMs shall not use SOP.</td>
</tr>
<tr>
<td>Assertion #</td>
<td>Test Name</td>
<td>Assertion Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5.2.2#4</td>
<td>PD/CabCon</td>
<td>Only the DFP shall be allowed to communicate with SOP^ and SOP'' after an explicit USB PD contract has been entered, except when a UFP has confirmed that it is communicating with a USB PD BFSK-based source and needs to communicate with SOP^ to identify if the cable is capable of greater than 1.5 A.</td>
</tr>
<tr>
<td>5.2.2#5</td>
<td>PD/CabCon</td>
<td>For active cables that support both SOP^ and SOP'', after attach or a USB PD Cable Reset, the plug directly connected to the DFP shall only respond to SOP^ and the plug directly connected to the UFP shall only respond to SOP''.</td>
</tr>
<tr>
<td>5.2.2#6</td>
<td>PD/CabCon</td>
<td>The Discover Identity message shall start with SOP'.</td>
</tr>
</tbody>
</table>

5.2.3 Modal Cable Management

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3#1</td>
<td>PD/CabCon</td>
<td>In addition to supporting the Discover Identity message, managed active cables shall support the following USB Power Delivery Structured VDMs.</td>
</tr>
<tr>
<td>5.2.3#2</td>
<td>PD/CabCon</td>
<td>These following VDMs shall start with SOP': Discover SVIDs, Discover Modes, Enter Mode, Exit Mode</td>
</tr>
</tbody>
</table>

5.2.3.1 Discover SVIDs

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.1#1</td>
<td>PD/CabCon</td>
<td>The managed active cable shall return a list of SVIDs that it supports.</td>
</tr>
</tbody>
</table>

5.2.3.2 Discover Modes

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.2#1</td>
<td>PD/CabCon</td>
<td>The managed active cable shall return a list of Alternate Modes it supports for each SVID.</td>
</tr>
</tbody>
</table>

5.2.3.3 Enter Mode

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.3#1</td>
<td>PD/CabCon</td>
<td>The managed active cable shall use the Enter Mode command to enter an Alternate Mode.</td>
</tr>
</tbody>
</table>

5.2.3.4 Exit Mode

<table>
<thead>
<tr>
<th>Assertion #</th>
<th>Test Name</th>
<th>Assertion Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.4#1</td>
<td>PD/CabCon</td>
<td>The managed active cable shall use the Exit Mode command to exit an alternate mode previously entered.</td>
</tr>
<tr>
<td>5.2.3.4#2</td>
<td>PD/CabCon</td>
<td>Exit Mode shall return the cable to its default USB operation.</td>
</tr>
</tbody>
</table>
Test Requirements

Hardware

The USB Type-C Connector Verification System (CVS) is a hardware solution capable of testing the verifications defined by this document. The CVS implements the following block diagram:

For a PUT bound to a USB Type-C receptacle, the CVS is required to emulate the USB Type-C Connector State Machines from the perspective of the PUT receptacle. So it must appear as the Source / Sink / SNKAS / DRP AND as the cable (Ra) at the same time. To accomplish this the CVS uses a special cable so that CVS hardware has access to both CC pins on a PUT receptacle. If the PUT is bound to a captive cable, then the test hardware emulates the USB Type-C Connector State Machines from the perspective of the captive cable connector, and does not emulate a cable at the same time.
Additionally, the CVS must be able to measure voltages and currents as defined in the Electrical Requirements section.

Electrical

The CVS determines PUT state by confirming that state's electrical requirements are detected. CC terminations Rp, Rd, and Ra and currents and voltages are defined in USB Type-C Spec Section 4.11.1 Termination Parameters and 4.11.3 Voltage Parameters. VBUS values are defined by the USB Type-C spec as well all the USB 2.0 and USB 3.1 specifications, USB BC 1.2, and USB Power Delivery specification depending on the context. VBUS current is defined by USB Type-C Specification. VCONN is defined by the USB Type-C spec and USB PD specification. The CVS verifications check against these defined values to confirm PUT state.

Timing

Transitions between states and other timers are defined in USB Type-C Spec Section 4.11.2 Timing Parameters. The CVS verifications check against these defined values to confirm PUT transitions.

In addition to those parameters defined in the table, there are some clarifying points and additional timers defined below:

1) **DRP PUT transition to Attached state**

The time from CVS transition to Unattached state to when CVS can verify one of:

1) PUT transitions to Attached.SNK
2) PUT transitions to Attached.SRC

is:

\[t_{DRP.DRPAttach} = 5 \times t_{DRP} \]

2) **PUT transition out of Attached.SRC**

The PUT transition from Attached.SRC or PoweredAccessory to Unattached.SNK or Unattached.SRC is immediate as defined in the USB Type-C Specification. But the PUT has tVbusOFF or tVconnOFF to stop sourcing Vbus and Vconn (USB Type-C Spec Section 4.11.2). So for those transitions, the PUT may be sourcing Vbus or Vconn while in the Unattached.SNK or Unattached.SRC state. This is the only scenario where a PUT would be sourcing those voltages while in Unattached.SNK or Unattached.SRC, and the reader may note this is an exception to the spec requirement that those voltages are not sourced while in those states (USB Type-C Spec Sections 4.5.2.2.3.1 Unattached.SNK Requirements & 4.5.2.2.6.1 Unattached.SRC Requirements).

Although the spec defines the transition out of Attached.SRC or PoweredAccessory to be immediate when Rd is no longer detected, due to low clock speed on the CC pins and power saving implementations the PUT may not detect Rd has been removed for more than 2 ms. If USB PD is implemented on the product, it may be retrying a message and postponing far-end detection for more than 12ms.

For the purposes of Compliance testing we have given the PUT a timer of tDetach to make the transition.

\[t_{Detach} = \text{max } t_{PDDebounce} = 20\text{ms} \]
3) PUT transition out of Attached.SNK

When a PUT transitions from Attached.SNK to Unattached.SNK or Unattached.SRC, it must make the transition immediately upon detecting removal of Vbus. This can be immediate and may take up to tVbusOFF.

Product

There are a few testing requirements based on the USB-C Product implementation.

The Vendor Info File (VIF) is used in conjunction with test software to indicate PUT product implementation. This file can be generated by the following tool:

http://www.usb.org/developers/tools/#PDFile

Note: The VIF may be generated by test equipment vendors as well.

This section lists VIF fields that are used or implicated in the USB Type-C Functional Test descriptions and gives a brief summary of how they are used.

Type_C_State_Machine
Type_C_Implements_Try_SRC
Type_C_Implements_Try_SNK
Type_C_Supports_Audio_Accessory
Type_C_Supports_VCONN_Powered_Accessory
Type_C_Is_Vconn_Powered_Accessory
Type_C_Is_Debug_Target_SNK
Type_C_Is_Debug_Target_SRC

These fields’ values are used in Connection Tests to determine applicability. Source Connection tests are only applicable when Type_C_State_Machine = 0 (SRC). Type_C_State_Machine is used in several Source-Capable or Sink-Capable Tests to constrain applicability as well.

Type_C_Can_Act_As_Host
Type_C_Can_Act_As_Device
Type_C_Host_Speed
Type_C_Device_Speed

These fields’ values are used in various tests to determine whether the PUT supports USB 3.1 or USB 2.0 and at what speed. With this information, the CVS will know which data conditions from the test description are applicable for the test run. A test step might refer to a PUT that supports USB 3.1 as a host. This is equivalent to Type_C_Can_Act_As_Host = YES and Type_C_Host_Speed = 1.

UUT_Device_Type

This field is used to ascertain whether the PUT supports PD. If the value is set to 6 (Type_C_Only) then the PUT is not PD capable. The PUT is PD capable with any other value. If UUT_Device_Type is not set to 6 (Type_C_Only) and Type_C_Can_Act_As_Host = YES then the Data_Capable_as_USB_Host_SOP field must also be set to YES in
the VIF. Similarly, if Type_C_Can_Act_As_Device = YES then the Data_Capable_As_USB_Device_SOP field must be YES.

UUT_Device_Type is also used to determine whether Source-Capable or Sink-Capable Tests are applicable. If the value is in the set {0: Consumer Only, 1: Consumer/Provider, 2: Provider/Consumer, 4: DRP}, then the Sink-Capable Tests are required. If the value is set to one of {1: Consumer/Provider, 2: Provider/Consumer, 3: Provider Only, 4: DRP}, then the Source-Capable Tests are required.

For USB-IF Certification, a Provider/Consumer or Consumer/Provider with Type_C_State_Machine set to SRC or SNK are discouraged. These product schemes will limit a product’s ability to connect with its link partner and creates a silent failure. The failure scenarios include the connection between a SNK which supports PR_Swap and a dead battery device.

Captive_Cable

The VIF field Captive_Cable set to NO indicates the PUT is a PUT_R, and the value YES indicates PUT is a PUT_C. More information about PUT_R and PUT_C is in the Tests section.

Rp_Value

If the VIF field Type_C_State_Machine is set to 0 (SRC) or 2 (DRP) then the PUT has an Rp pull up resistor on its CC pins. The value of this resistor indicates the Type-C Current level that the PUT can source. The value here indicates the PUT Rp resistor value on Attach.

Port_Battery_Powered

This field is used in TD 4.11.2 Sink Dead Battery Test, checking that a DUT with a Dead Battery implements a USB Type-C Sink State Machine.

If the DUT uses a Battery then it must run the Type-C Functional Tests once with a charged battery and again with a Dead Battery.

Type_C_Port_On_Hub

This field is used in TD Section 4.12 Hub tests.

Type_C_Power_Source

If the DUT is capable of being a busUFP-powered device or an Externally self-powered device (including charge-through), then the DUT must run Type-C Functional Tests with both connection scenarios. As a busUFP-powered device, the DUT must implement a USB Type-C Sink Connection state machine.

Type_C_BC_1_2_Support

This field is used to determine if the PUT supports BC 1.2 and whether it is supported as a Source, as a Sink, or both. If the DUT is capable of sinking via USB BC 1.2 protocol, then its usage will be exercised during TD 4.10.2 Sink Power Precedence Test.

Type_C_Sources_Vconn

This field is used to determine if the PUT is a PUT_V and will be tested again Vconn requirements. Some PUTs are required to source Vconn as described in the PUT_V definition in the Tests section of this document. When a PUT is not required to source Vconn, it still may support doing so and in that case is still held to the Vconn requirements in the spec.
Compliance Rev 0.2080

DR_Swap_To_DFP_Supported

DR_Swap_To_UFP_Supported

These fields are used in TD 4.11.1 DR_Swap Test to ascertain which directions to test. Usage described in the test steps.

If the VIF fields indicate either of the following:

- UUT_Device_Type \(!= 6\) (Type_C_Only) and Type_C_State_Machine is DRP
- Type_C_Can_Act_As_Host is YES and Type_C_Can_Act_As_Device is YES

Then at least one of the fields **DR_Swap_To_DFP_Supported** or **DR_Swap_To_UFP_Supported** must be YES.

VCONN_Swap_To_On_Supported

VCONN_Swap_To_Off_Supported

These fields are used in TD 4.9.4 Source Vconn_Swap Test and TD 4.10.5 Sink Vconn_Swap Test to ascertain which directions to test. Usage described in the test steps.

Modal_Operation_Supported_SOP

Attempts_Discov_SOP

These fields are used in TD 4.9.5 Source Alternate Modes Test and TD 4.10.6 Sink Alternate Mode Test to ascertain which directions to test. Usage described in the test steps.

Accepts_PR_Swap_As_Src

Accepts_PR_Swap_As_Snk

These fields are used in TD 4.9.3 Source PR_Swap Test and TD 4.10.4 Sink PR_Swap Test to ascertain which directions to test. Usage described in the test steps.
Tests

Many test steps require the CVS to emulate states defined in the USB Type-C Connection State machines. In the attached state this includes appropriate responses to capabilities messages and cable discovery as needed. During steps that require messaging, the CVS default behavior is to reject unexpected swap messages.

State emulation is accomplished slightly differently when the CVS is testing a PUT bound to a USB Type-C receptacle (PUT_R) vs. a PUT bound to a USB Type-C captive cable or a direct attach (PUT_C).

For a PUT_R, the CVS will apply the CC values indicated by a Type-C Connection State on only one CC pin. Note: for a test run, the one CC pin stays the same throughout the test. The other pin, unless otherwise indicated, remains in an Open state. The test steps will indicate if the other CC pin will be terminated with Ra.

For a PUT_C, the CVS will apply the CC values indicated by a Type-C Connection State on both CCs and monitors the CCs to ascertain to which CC the PUT is connected.

For instance, when a test step indicates that the CVS transitions to Unattached.SRC:

- For a PUT_R, the CVS will apply Rp on one CC and unless otherwise indicated, the other CC pin will remain in an Open state. The test step will indicate if the other CC pin will be terminated with Ra.
- For a PUT_C, the CVS will apply Rp on both CCs.

When a test step indicates that the CVS apply Rp, unless otherwise indicated, the Rp advertises the USB default current.

When a test step indicates it is verifying data communications:

- For USB 3.1 data communications, the tester verifies U0 is reached between CVS and PUT
- For USB 2.0 data communications, the tester verifies packets received from PUT

The following paragraphs describe the assumed initial testing state for a PUT_R and PUT_C.

For a PUT_R, every test is initialized with the following assumptions:

1. CVS starts in Disabled
2. PUT and CVS are physically connected through a cable.
3. The cable connecting the CVS and PUT has a through connection on both CC pins so the CVS can emulate a cable. This is so the CVS can generate and monitor VCONN sourcing and sinking.
For a PUT_C, every test is initialized with the following assumptions:
1. CVS starts in Disabled
2. PUT and CVS are physically connected through the PUT captive cable.

The PUT will always be either a PUT_R or a PUT_C. In addition to that, the PUT will also be categorized as a PUT_V if it supports sourcing Vconn in the Attached.SRC state. A test step will indicate when a verification is only checked for a PUT_V.

If the PUT is a PUT_R and indicates point 1 and either 2 or 3 below:
1. VIF field Type_C_State_Machine is set to SRC or DRP or UUT_Device_Type is Consumer/Provider
2. VIF field Type_C_Host_Speed is USB 3.1 or Type_C_Device_Speed is USB 3.1 indicating PUT supports USB 3.1 signaling on its SS RX and SS TX pairs
3. VIF indicates any Source PDO with Max Current greater than 3A
 Then the PUT is required to be capable of sourcing Vconn and shall also be referred to as a PUT_V in this document.

If the PUT has VIF field Type_C_Port_On_Hub set to YES and Type_C_Can_Act_As_Host set to YES, then CVS prompts the user to verify the UFP of the hub under test is plugged into a host.

Connection Tests

All USB Type-C Connectors participate in the Initial Voltage Test, TD 4.1. The rest of the Connection Tests check the CC initialization sequence between possible USB Type-C implementations. Tests are categorized by the type of Connection State Machine they implement in USB Type-C Spec Section 4.5.2.1 Connection State Diagrams and for the Accessories section, for a lack of Connection State Machine.

TD 4.1.1 Initial Voltage Test

A. Purpose:
 1. Verify that SBU pins are terminated with 1M or higher, and there is no signal
 2. An unconnected PUT that is not a charger with a captive cable does not source voltage/current on its CC pins.
 3. Verify Source – Source connection does no damage

B. Applicability:
 1. This test applies to all USB Type-C Ports, indicated with VIF field UUT_Device_Type field not set to Cable.

C. Asserts:
 1. 4.3#1
 2. 4.4.2#2,4
 3. 4.5.1.2#1,2
 4. 4.5.2.2.1#1
 5. 4.5.2.2.1.1#1
 6. 4.5.2.2.6.2#1
 7. 4.5.2.2.13.1#1
 8. 4.8.1.1#1
 9. 4.8.1.2#1
 10. 4.6#5

D. Procedure:
 → CVS verifies that the SBU pins on the PUT are at least 950k to ground. (4.3#1):
 → The PUT-SSRX and SSTX pins are in the USB Safe State.
Source Tests

These tests are for USB Type-C connectors that implement the Source connection state machine in USB Type-C Specification Figure 4-12.

TD 4.2.1 Source Connect Sink Test

A. Purpose:
 1. Verify a Source transitions to Attached.SRC according to spec
 2. Verify a Source transitions to Unattached.SRC when Sink removed

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SRC

C. Asserts:
 1. 4.4.2.1-3
 2. 4.5.2.6.1#1-3
D. Conditions:
1. CVS emulates USB PD 2.0 5A Active Cable
2. CVS emulates USB PD 3.0 5A Active Cable

D. Procedure:
1. CVS verifies PUT does not apply Rd for the remainder of the test (Note: This is to check for toggling between Rd/Rp for connect)
2. If VIF field Type_C_Sources_Vconn is NO, CVS verifies PUT does not source Vconn for the remainder of this test.
3. CVS transitions to Unattached.SNK.
4. For a PUT_R:
 a. CVS terminates one CC pin with Ra for the duration of the test.
 b. CVS emulates an Active Emarker Emarked cable with the first Condition that can support 5A current from section D above
 c. CVS verifies PUT has transitioned to Unattached.SRC
 i. PUT applies Rp simultaneously on both CC pins
 d. CVS waits 80ms
 e. CVS transitions to Disabled except for one CC maintaining Ra
 f. CVS verifies PUT transitions to Unattached.SRC
 g. Wait 750ms.
 h. CVS transitions to Unattached.SNK
4.5. CVS verifies that:
 a. CVS detects SNK.Rp on its Rd terminated CC pin
 b. PUT transitions to Attached.SRC by sourcing VBUS after tCCDebounce and before tCCDebounce + tVbusON expires after CVS detects SNK.Rp

5. Vconn_tested = false
6. If PUT supports USB PD:
 a. CVS verifies that:
 i. PUT stabilizes VBUS before initiating USB PD communications
 ii. CVS and PUT negotiate a contract.
 b. If PUT source capabilities include a Max Current > 3 A:
 i. CVS verifies that for a PUT_R, it supplied Vconn within tVconnON
 ii. Vconn_tested = true

7. If PUT supports USB 3.1 DFP:
 a. CVS verifies that:
 i. PUT functionally connects the SS pairs within 1 second 80 ms
 ii. For a PUT_R and not Vconn_tested:
 01 It supplied VCONN within tVCONNON
 02 Vconn_tested = true
 b. CVS loads 1W on Vconn
 c. Wait 1s

 a. CVS verifies that for a PUT_R, it supplied Vconn within tVconnON
10. CVS transitions to Disabled
11. CVS verifies that PUT transitions to Unattached.SRC within tDetach
 a. PUT removes Vbus within tVbusOFF
 b. For a PUT that supports USB 3.1 DFP, Vconn was sourced until after step 10
 c. All signaling has stopped
12. CVS waits 1 second, checking that PUT does not toggle
TD 4.2.2 Source Connect SNKAS Test

A. Purpose:
 1. Verify a Source transitions to Attached.SRC according to spec when link partner is Sink with Accessory Support (SNKAS).

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SRC

C. Asserts:
 1. See TD 4.2 Asserts.
 2. 4.5.2.2.7.2#4

D. Procedure:
 1. CVS transitions to Unattached.SNK for 5ms.
 2. CVS transitions to Unattached.Accessory for max_{dc}SRC.DRP x max_{tDRP}.
 3. CVS verifies Source is in Unattached.SRC:
 a. For a PUT_R, both CCs advertise Rp
 b. For a PUT_C, the CC connected to Rd advertises Rp
 4. CVS transitions to Unattached.SNK
 5. CVS verifies that the PUT:
 a. Advertises VBUS capabilities with Rp throughout the test
 b. Sources VBUS after tCCDebounce deadline and before tCCDebounce + VBUSON expires.

TD 4.2.3 Source Connect DRP

A. Purpose:
 1. Verify a Source transitions to Attached.SRC according to spec

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SRC

C. Asserts:
 1. 4.4.2#1-3
 2. 4.5.2.2.6.1#1-3
 3. 4.5.2.2.6.2#1
 4. 4.5.2.2.7.1#1-3
 5. 4.5.2.2.7.2#1
 6. 4.5.2.2.8.1#2,4-6

D. Procedure:
 1. CVS transitions to Unattached.SNK for 1.5 ms
 2. CVS transitions to Unattached.SRC for max_{dc}SRC.DRP x min_{tDRP}
 3. CVS transitions to Unattached.SNK
 4. CVS verifies the PUT is in Unattached.SRC providing an Rp within USB default values
 5. CVS verifies the PUT transitions to Attached.SRC after tCCDebounce expires:
 a. PUT sources VBUS within tBUSON
 b. If PUT supports USB PD:
 i. CVS and PUT negotiate an explicit contract

TD 4.2.4 Source Connect Try.SRC DRP

A. Purpose:
 1. Verify a Source transitions to Attached.SRC according to spec

B. Applicability:
1. This test applies when VIF field Type_C_State_Machine is SRC

C. Asserts:
 1. TBD

D. Procedure:
 1. CVS transitions to Unattached.SNK for 10 ms
 2. CVS transitions to Unattached.SRC for 50 ms
 3. CVS transitions to Unattached.SNK
 4. CVS verifies the PUT is in Unattached.SRC providing Rp
 5. CVS transitions to AttachWait.SNK for tCCDebounce max
 6. CVS verifies the PUT transitions to Attached.SRC
 7. CVS transitions to Try.SRC
 a. PUT has removed Vbus within tVbusOff
 b. PUT has ceased all clocked signaling
 8. If Vbus is not within vSafe0V after max tDRPTry from step 7, wait min tTryTimeout from step 7
 9. CVS verifies the PUT transitions to Attached.SRC and back to Unattached.SRC before time expires

TD 4.2.5 Source Connect Try.SNK DRP

A. Purpose:
 1. Verify a Source transitions to Attached.SRC according to spec

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SRC

C. Asserts:
 1. TBD

D. Procedure:
 1. CVS transitions to Unattached.SNK for 1.5 ms
 2. CVS transitions to Unattached.SRC for min dcSRC.DRP x min tDRP
 3. CVS transitions to Unattached.SNK
 4. CVS verifies the PUT is providing Rp
 5. CVS verifies the PUT transitions to Attached.SRC after tCCDebounce expires:
 a. PUT sources VBUS within tVBUSON
 b. If PUT supports USB PD:
 i. CVS and PUT negotiate an explicit contract

TD 4.2.6 Source Connect Audio Accessory

A. Purpose:
 1. Verify a Source that supports Audio Accessories connects according to spec requirements

B. Applicability:
 1. This test applies for a PUT_R when VIF field Type_C_State_Machine is SRC and Captive_Cable is NO

C. Asserts:
 1. 4.5.2.2.7.2#2
 2. 4.5.2.2.15.1#1.2,4,5
 3. 4.5.2.2.15.2#2
D. Procedure:
1. CVS presents Audio Accessory CC terms with Ra
2. CVS verifies PUT provides Rp on both CCs (PUT in Unattached.SRC)
3. If VIF field Type_C_Supports_Audio_Accessory is YES:
 a. CVS verifies PUT transitions to AudioAccessory after tCCDebounce:
 i. The PUT reconfigures its pins as defined in Appendix A
 ii. The PUT does not drive VBUS or VCONN
 iii. If the PUT sinks current over VBUS, it shall not be more than 500mA
 iv. The PUT applies Rp on at least one CC
4. If VIF field Type_C_Supports_Audio_Accessory is NO:
5. CVS transitions to Disabled
6. If VIF field Type_C_Supports_Audio_Accessory is YES:
 a. CVS verifies PUT transitions to Unattached.SRC after tCCDebounce

TD 4.2.7 Source Connect Debug Accessory

A. Purpose:
1. Verify a Source that supports Debug Accessories does not source Vbus

B. Applicability:
1. This test applies for a PUT_R when VIF field Type_C_State_Machine is SRC and Captive_Cable is NO

C. Asserts
1. 4.5.2.2.16.1#2

D. Procedure:
1. CVS presents DTS (Debug and Test System) Sink with Rds on both CCs
2. CVS verifies PUT provides Rp on both CCs (PUT in Unattached.SRC)
3. If VIF field Type_C_Is_Debug_Target_SRC is YES:
 a. CVS verifies PUT sources Vbus after tCCDebounce and within tVbusON.
4. Else if VIF field Type_C_Is_Debug_Target_SRC is NO or not defined:
 a. CVS verifies PUT does not source Vbus after tCCDebounce expires

TD 4.2.8 Source Connect VCONN Accessory

A. Purpose:
1. Verify the Source connects with an Accessory that uses VCONN.

B. Applicability:
1. This test is applicable for a PUT_R with VIF field Type_C_State_Machine set to SRC and Captive_Cable is NO and Type_C_Sources_Vconn is YES

C. Asserts:
1. 4.5.2.2.8.1#10
2. 4.5.2.2.8.2#6
3. 4.5.2.2.19.1#5

D. Procedure:
1. CVS presents a Vconn-powered Accessory by terminating one CC with Rd and one CC with Ra.
2. CVS verifies that:
 a. PUT transitions to Attached.SRC by sourcing VBUS after tCCDebounce and before tCCDebounce + tVbusON expires
 b. PUT advertises VBUS capability over Rp
 c. PUT_V sources VCONN within tVCONNON
 d. For a PUT with PD (VIF field UUT_Device_Type is not set to Type_C_Only):
 i. PUT initiates a PD Explicit Contract

41
ii. For a PUT with VIF field Attempts_Discov_SOP set to YES:
 1. PUT initiates Alternate Mode discovery with Structured VDMs
3. CVS transitions to Disabled
4. CVS verifies:
 a. PUT stops sourcing VCONN within tVCONNOff
 b. PUT stops sourcing VBUS within tVBUSOFF

Sink Tests

These tests are for USB Type-C connectors that implement the USB Type-C Sink Connection State Diagram in Figure 4-14.

TD 4.3.1 Sink Connect Source Test

A. Purpose:
1. Verify a Sink transitions to Attached.SNK according to spec
2. Verify that removing VBUS transitions the PUT to Unattached.SNK
B. Applicability:
1. This test applies when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory is NO and Type_C_Supports_VCONN_Accessory is NO.
C. Asserts:
 1. 4.5.2.2.3.1#1-2
 2. 4.5.2.2.3.2#1
 3. 4.5.2.2.4.1#1-2
 4. 4.5.2.2.4.2#3
 5. 4.5.2.2.5.1#2-3.5-6
 6. 4.5.2.2.5.2#1
D. Procedure:
 1. CVS verifies the PUT does not apply Rp for the remainder of the test.
 2. CVS transitions to Unattached.SRC
 3. For a PUT_R, CVS terminates one CC pin with Ra in any state other than Disabled for the remainder of the test.
 4. CVS verifies PUT presents Rd for tCCDebounce
 5. CVS transitions to Attached.SRC:
 6. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If VIF field PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 e. For a PUT_R, VCONN is not supplied
 7. CVS transmits Discover ID PD messaging for 200ms.
 8. CVS verifies that PUT:
 a. If UUT_Device_Type is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If Responds_To_Discov_SOP is YES:
 01 Transmits valid Responder ACK messages.
 b. Remains in Attached.SNK during and for 500ms after step 6.
 9. CVS transitions to Disabled
10. CVS verifies that PUT transitions to Unattached.SNK before tVbusOFF expires:
 a. PUT data communication has ceased.
11. CVS waits 1 second

TD 4.3.2 Sink Connect DRP Test

A. Purpose
 1. Verify a Sink transitions to Attached.SNK according to spec

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory is NO and Type_C_Supports_VCONN_Accessory is NO.

C. Asserts:
 1. 4.5.2.2.3.1#1-2
 2. 4.5.2.2.3.2#1
 3. 4.5.2.2.4.1#1-2
 4. 4.5.2.2.4.2#1.3
 5. 4.5.2.2.5.1.#2-3.5-6
 6. 4.5.2.2.5.2#1

D. Procedure:
 1. CVS transitions to Unattached.SRC for 5ms
 2. CVS transitions to Unattached.SNK for 30ms
 3. CVS transitions to Unattached.SRC
 4. CVS verifies PUT continued to provide Rd on the CC pin for the duration of steps 1-3
 and for tCCDebounce after
 a. For a PUT_R, verify this for both CC pins
 5. CVS transitions to Attached.SRC
 6. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair
 d. For a PUT_R, VCONN is not applied
 7. CVS transitions to Disabled
 8. CVS verifies that PUT transitions to Unattached.SNK before tVbusOFF expires
 a. PUT data communication has ceased
 b. PUT is not sourcing Vbus (Vbus is at vSafe0V)
 c. PUT is not sourcing Vconn

TD 4.3.3 Sink Connect Try.SRC DRP Test

A. Purpose
 1. Verify a Sink transitions to Attached.SNK according to spec

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory is NO and Type_C_Supports_VCONN_Accessory is NO.

C. Asserts:
 1. TBD

D. Procedure:
1. CVS transitions to Unattached.SRC for 5ms
2. CVS transitions to Unattached.SNK for 30ms
3. CVS transitions to Unattached.SRC
4. CVS verifies PUT continued to provide Rd on the CC pin for the duration of steps 1-3 and for $t_{CCDebounce}$ after
 a. For a PUT_R, verify this for both CC pins
5. CVS transitions to Attached.SRC
6. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair
 d. For a PUT_R, VCONN is not applied
7. CVS transitions to Disabled
8. CVS verifies that PUT transitions to Unattached.SNK before $t_{VBUSOFF}$ expires
 a. PUT data communication has ceased
 b. PUT is not sourcing Vbus (V_{bus} is at v_{Safe0V})
 c. PUT is not sourcing Vconn

TD 4.3.4 Sink Connect Try.SNK DRP Test

A. Purpose
 1. Verify a Sink transitions to Attached.SNK according to spec

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is SNK and Type_C_Supports_Audio_Accessory is NO and Type_C_Supports_VCONN_Accessory is NO.

C. Asserts:
 1. TBD

D. Procedure:
 1. CVS transitions to Unattached.SRC for 5ms
 2. CVS transitions to Unattached.SNK for 30ms
 3. CVS transitions to Unattached.SRC
 4. CVS verifies PUT continues to provide Rd on the CC pin for the duration of this test
 a. For a PUT_R, verify Rd is provided on both CC pins until Attached, and then on at least one CC for the duration of this test.
 5. CVS transitions to AttachedWait.SRC for $max\ t_{CCDebounce}$
 6. CVS transitions to Try.SNK for $max\ t_{DRPTry} + max\ t_{CCTryDebounce}$
 7. CVS transitions to TryWait.SRC for $max\ t_{CCTryDebounce}$
 8. CVS transitions to Attached.SRC
 9. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair
 d. For a PUT_R, VCONN is not applied
 10. CVS transitions to Disabled
 11. CVS verifies that PUT transitions to Unattached.SNK before $t_{VBUSOFF}$ expires
 a. PUT data communication has ceased
 b. PUT is not sourcing Vbus (V_{bus} is at v_{Safe0V})
TD 4.3.5 Sink Connect SNKAS Test

A. Purpose:
 1. Verify a Sink VCONN Powered Accessory configures an Alternate Mode when VCONN is present

B. Applicability:
 1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Is_VCONN_Powered_Accessory is set to YES.

C. Asserts:
 1. 4.10#1-4

D. Procedure:
 1. CVS does not present Vbus for the duration of this test.
 2. CVS presents VCONN to the PUT CC pin terminated with Ra
 3. CVS and PUT negotiate a PD Explicit Contract
 4. CVS initiates negotiations for an Alternate Mode (Discover ID, SVIDs and Modes)
 5. CVS verifies PUT supports an Alternate Mode
 6. CVS initiates an Enter Mode command with a PUT supported Mode
 7. CVS verifies:
 a. PUT follows all electrical constraints for SBU and any reconfigured pins (i.e. USB Safe States). PUT SBU, SSRX, SSRTX, D+ and D– pins are in the USB Safe State.
 b. PUT sends ACK for Enter Mode
 8. CVS initiates an Exit Mode command for the active mode
 9. CVS verifies:
 a. PUT follows all electrical constraints for SBU and any reconfigured pins (i.e. USB Safe States).
 b. PUT sends ACK for Exit Mode after successfully exiting the mode.
 10. CVS verifies PUT transitions to Unattached.SNK within tVCONNOFF
 a. All clocked signaling ceases

TD 4.3.6 Sink Connect Accessories Test

A. Purpose:
 1. Verify a Sink PUT does not interact with Accessories.

B. Applicability:
 1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Supports_Audio_Accessory is NO and Type_C_Supports_VCONN_Accessory is NO

C. Asserts:
 1.

D. Procedure:
 1. CVS applied Rd to both CCs.
 2. CVS verifies no activity on the DUT.
 3. CVS applied Ra to both CCs.
 4. CVS verifies no activity on the DUT.
 5. CVS applies Rd and Ra on CC1 and CC2.
6. CVS verifies no activity on the DUT.

SNKAS Tests

These tests are for USB Type-C Connectors that implement the USB Type-C Sink with Accessory Support (SNKAS) Connection State Diagram in Figure 4-15

TD 4.4.1 SNKAS Connect Source Test

A. Purpose
1. Verify a SNKAS PUT transitions to Attached.SNK according to spec

B. Applicability
1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Supports_Audio_Accessory or Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts
1. See TD 4.8

D. Procedure
1. CVS transitions to Unattached.SRC.
2. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test.
3. CVS and PUT transition through the Type-C Connection State Machines to Attached.SRC and Attached.SNK
4. CVS verifies PUT transitions to Attached.SNK after tCCDebounce and before tCCDebounce + (dcSRC.DRP x tDRP) expires.
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 d. For a PUT_R, VCONN is not applied
5. CVS transmits Discover ID PD messaging for 200ms.
6. CVS verifies that PUT:
 a. If UUT_Device_Type is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If Responds_To_Discov_SOP is YES:
 01 Transmits valid Responder ACK messages.
 b. Remains in Attached.SNK during and for 500ms after step 5.
7. CVS transitions to Disabled
8. CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires
 a. PUT data communication has ceased.
 b. PUT is cycling between Unattached.SNK and Unattached.Accessory.

TD 4.4.2 SNKAS Connect DRP Test

A. Purpose:
1. Verify a SNKAS PUT transitions to Attached.SNK correctly with DRP
2. Verify transition to Attached.SNK succeeds given varying measurements of tDRP and dcSRC.DRP

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Supports_Audio_Accessory or Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts:
 1. See TD 4.9
 2. 4.5.2.13.283

D. Conditions on CVS DRP:
 1. tDRP = 50ms, dcSRC.DRP = 30%
 2. tDRP = 75ms, dcSRC.DRP = 30%
 3. tDRP = 100ms, dcSRC.DRP = 30%
 4. tDRP = 50ms, dcSRC.DRP = 50%
 5. tDRP = 75ms, dcSRC.DRP = 50%
 6. tDRP = 100ms, dcSRC.DRP = 50%
 7. tDRP = 50ms, dcSRC.DRP = 70%
 8. tDRP = 75ms, dcSRC.DRP = 70%
 9. tDRP = 100ms, dcSRC.DRP = 70%

E. Procedure:
 1. CVS uses Condition 1 above for tDRP and dcSRC.DRP
 2. CVS transitions to Unattached.SNK for 5ms
 3. CVS transitions to Unattached.SRC for (dcSRC.DRP x tDRP). If this test step is reached more than once after step 1:
 a. CVS monitors CCs for Rd and transitions to AttachedWait.SRC when it is detected
 b. If Rd is present for longer than tCCDebounce, CVS transitions to Attached.SRC. Continue to step 5.
 4. CVS transitions to Unattached.SNK for tDRP – (dcSRC.DRP x tDRP).
 a. If the PUT has reached step 4 less than 5 times since step 1, transition to step 3.
 b. Else, the test fails.
 5. CVS verifies PUT transitions to Attached.SNK before 5 x tDRP expires.
 a. PUT sinks no more Vbus current than CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 d. For a PUT_R, VCONN is not applied
 6. CVS transitions to Disabled
 7. CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires
 a. PUT data communication has ceased
 b. PUT is cycling between Unattached.SNK and Unattached.Accessory.
 8. Continue at Step 1 with the next Condition

TD 4.4.3 SNKAS Connect Try.SRC DRP Test

A. Purpose:
 1. Verify a SNKAS PUT transitions to Attached.SNK correctly with DRP
 2. Verify transition to Attached.SNK succeeds when its port partner uses Try.SRC

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Supports_Audio_Accessory or Type_C_Supports_VCONN_Powered_Accessory is YES.
C. Asserts:
 1. See TD 4.9
 2. 4.5.2.2.13.2#3

D. Procedure:
 1. CVS attaches Ra on one of its CCs for the duration of the test
 2. CVS transitions to Unattached.SRC for 5ms
 3. CVS transitions to Unattached.SNK and starts timer max dcSRC.dRP x max tDRP (70ms).
 4. CVS monitors CCs for Rp and verifies that Rp is connected before the timer expires.
 5. CVS transitions to AttachWait.SNK for max tCCDebounce.
 6. CVS verifies that Vbus is not detected after tCCDebounce.
 7. CVS remains in AttachWait.SNK and starts tAMETimeout.
 8. CVS verifies that PUT attaches Rds (transitions to Try.SNK) before tAMETimeout expires.
 9. CVS transitions through Unattached.SRC to AttachWait.SRC after min tPDDebounce.
 10. CVS transitions to Attached.SRC after max tCCDebounce.
 11. CVS verifies that PUT transitions to Attached.SNK:
 a. If PUT supports USB PD:
 i. PUT and CVS establish an explicit contract
 b. If PUT supports USB data:
 i. PUT starts USB communication on its SS or D+/D- pairs.

TD 4.4.4 SNKAS Connect Try.SNK DRP Test

A. Purpose:
 1. Verify a SNKAS PUT transitions to Attached.SNK correctly with DRP
 2. Verify transition to Attached.SNK succeeds when its port partner uses Try.SNK

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory or Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts:
 1. See TD 4.9
 2. 4.5.2.2.13.2#3

D. Procedure:
 1. CVS applies Ra to one CC for the duration of the test
 2. CVS transitions to Unattached.SNK for 5ms
 3. CVS transitions to Unattached.SRC and starts timer max dcSRC.dRP x max tDRP (70ms).
 4. CVS monitors CCs for Rd and verifies that Rd is connected before the timer expires.
 5. CVS transitions to AttachWait.SRC for tCCDebounce.
 6. CVS transitions to Try.SNK and starts tDRPTry.
 7. CVS verifies that PUT transitions to attaching Rp (Unattached.Accessory) after
 tPDDebounce and then before max dcSRC.dRP x max tDRP (70ms).
 8. If PUT attaches Rp before tDRPTry + tPDDebounce expires:
 a. CVS remains in Try.SNK
 b. CVS verifies PUT attaches Rd (transitions to Try.SNK) after tCCDebounce and
 then within tAMETimeout.
 c. When PUT attaches Rd, CVS transitions to TryWait.SRC after tPDDebounce.
 d. Skip to step 10.
 9. CVS transitions to TryWait.SRC after max tDRPTry + max tPDDebounce expires.
 10. CVS verifies PUT transitions to Unattached.SNK after tPDDebounce
11. CVS transitions to Attached.SRC after max tCCDebounce.
12. CVS verifies that PUT transitions to Attached.SNK:
 a. If PUT supports USB PD:
 i. PUT and CVS establish an explicit contract
 b. If PUT supports USB data:
 i. PUT starts USB communication on its SS or D+/D- pairs.

TD 4.4.5 SNKAS Connect SNKAS Test

A. Purpose:
1. Verify a SNKAS PUT interacts correctly with SNKAS

B. Applicability
1. This test is required when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory or
 Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts:
1. See TD 4.9
2. 4.5.2.2.13.2#3

D. Procedure:
1. CVS toggles between Unattached.SNK (and AttachWait.SNK) and
 Unattached.Accessory while performing steps 2 and 3.
2. CVS waits 500ms.
3. CVS verifies that PUT also toggles between Unattached.SNK (and AttachWait.SNK) and
 Unattached.Accessory.
4. If PUT is not a PUT_R, the test is over.
5. CVS applies Ra on one CC for the remainder of the test.
6. If Type_C_Supports_Vconn_Powered_Accessory is NO:
 a. CVS verifies that PUT continues to toggle between Unattached.SNK (and
 AttachWait.SNK) and Unattached.Accessory.
 b. The test is over.
7. CVS transitions to Unattached.Accessory and starts timer max dcSRC.DRP x max tDRP
 (70ms).
8. CVS monitors Ccs for Rd and verifies that Rd is connected before the timer expires.
9. CVS transitions to AttachWait.Accessory for tCCDebounce.
10. CVS transitions to PoweredAccessory and sources Vconn
11. If PUT VIF field Type_C_Is_Vconn_Powered_Accessory is YES
 a. CVS verifies that PD signaling has commenced
 b. The test is over.
12. CVS transitions to Try.SNK.
13. CVS verifies that:
 a. PUT transitions to attaching Rp (Unattached.Accessory) after tPDebounce and
 then before dcSRC.DRP x tDRP max (70ms).
 b. PUT attaches Rd (transitions to Try.SNK) after tCCDebounce and then within
 tAMETimeout.
14. When PUT attaches Rd, CVS waits tDRPTryWait min and then transitions to
 Unsupported.Accessory.
15. CVS verifies that CVS and PUT remain in Unsupported.Accessory and Try.SNK for
 tAMETimeout * 2.
TD 4.4.6 SNKAS Connect Audio Accessory

A. Purpose:
 1. Verify a SNK PUT transitions to AudioAccessory Mode correctly with Audio Accessory

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory or
 Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts
 1. 4.5.2.2.3.2#3
 2. 4.5.2.2.3.1#1-3
 3. 4.5.2.2.2.1#1
 4. 4.5.2.2.1.4.1#3
 5. 4.5.2.2.1.4.2#1
 6. 4.5.2.2.1.5.1#1-4
 7. 4.5.2.2.1.5.2#1

D. Procedure:
 1. CVS presents an Audio Accessory (Both CC pins terminated with Ra).
 2. CVS verifies PUT transitions to Unattached.Accessory within dsSRC.DRP x tDRP
 3. If the VIF field Type_C_Supports_Audio_Accessory is YES:
 a. CVS verifies PUT transition to AudioAccessory after tCCDebounce
 i. The PUT shall reconfigure its pins as defined in Appendix A
 ii. The PUT does not drive VBUS or VCONN
 iii. If the PUT sinks current over VBUS, it shall not be more than 500mA
 iv. The PUT applies Rp on at least one CC
 4. If the VIF field Type_C_Supports_Audio_Accessory is NO:
 a. Wait tAMETimeout.
 b. CVS verifies no Attached state is reached.
 5. CVS transitions to Disabled
 6. CVS verifies PUT transitions to Unattached.SNK within tCCDebounce.
 a. The PUT terminates its CC(s) with Rd

TD 4.4.7 SNKAS Connect Debug Accessory

A. Purpose:
 1. Verify a SNKAS PUT transitions to DebugAccessory Mode and does not source Vbus

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and
 Type_C_Supports_Audio_Accessory or
 Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts
 1. 4.5.2.2.14.1#2

D. Procedure:
 1. CVS present a DTS (Debug and Test System) SNK by terminating CC pins with Rd
 2. CVS verifies PUT transitions to Unattached.Accessory within dsSRC.DRP x tDRP
 3. CVS verifies PUT does not source Vbus after tCCDebounce.

TD 4.4.8 SNKAS Connect Powered.Accessory

A. Purpose:
1. Verify a SNK AS PUT transitions to Powered.Accessory Mode correctly with a VCONN powered Accessory

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is SNK and Type_C_Supports_VCONN_Powered_Accessory is YES.

C. Asserts
 1. 4.5.2.2.13.181-3
 2. 4.5.2.2.13.28\#2
 3. 4.5.2.2.14.181-3
 4. 4.5.2.2.14.28\#3-4
 5. 4.5.2.2.19.18\#2-6
 6. 4.5.2.2.19.28\#1-4
 7. 4.5.2.2.20.181-3
 8. 4.5.2.2.20.28\#1

D. Procedure:
 1. CVS presents a VCONN powered Accessory (one CC pin terminated with Ra and one with Rd, D+/D- and SS terms present)
 2. CVS verifies the PUT transitions to Unattached.Accessory within dcSRC.DRP x tDRP
 3. Wait 10ms.
 4. CVS removes the Rd termination.
 5. CVS verifies the PUT transitions to Unattached.SNK within tDetach.
 a. PUT ceases to supply Vconn within tVconnOFF
 b. PUT presents Rd terminations
 6. CVS presents 1 CC pin in the vRa range and one in Rd like a VCONN powered Accessory.
 7. CVS verifies the PUT transitions to Unattached.Accessory within dcSRC.DRP x tDRP
 8. CVS verifies the PUT transitions to Powered.Accessory after tCCDebounce
 a. PUT provides VCONN within tVconnON-PA
 b. PUT advertises vRd-1.5 or vRd-3.0 on Rp
 c. PUT does not drive VBUS
 d. PUT does not drive USB Host 3.1 or 2.0 traffic.
 9. CVS verifies PUT transitions to Unattached.SNK within tAMETimeout
 a. PUT ceases to supply Vconn within tVconnOFF
 b. PUT presents Rd terminations
 10. CVS verifies PUT transitions through Unattached.Accessory to Powered.Accessory within 200ms (tDRP + tCCDebounce).
 11. CVS transitions to Disabled.
 12. CVS verifies the PUT transitions to Unattached.SNK within tDetach
 a. PUT ceases to source Vconn within tVconnOFF
 b. PUT presents Rd on its CCs
 13. CVS presents a Vconn powered Accessory.
 14. CVS verifies the PUT transitions to Powered.Accessory after tCCDebounce and within tCCDebounce + dcSRC.DRP x tDRP:
 a. PUT provides Vconn within tVconnON-PA
 b. PUT initiates a PD Explicit Contract
 c. PUT initiates Alternate Mode discovery with Structured VDMs
 15. CVS loads 1W on Vconn
 16. CVS responds to Discover SVIDs with 1 bogus SVID
 17. CVS waits max tAMETimeout (1.5s)
 18. CVS verifies the PUT transitions to Unsupported.Accessory.
 a. The PUT ceases to supply Vconn within tVconnOFF
 b. The PUT does not drive VBUS
 c. The PUT applies Rp on one CC pin, advertising default USB current
 19. CVS transitions to Disabled.
 20. CVS verifies the PUT transitions to Unattached.SNK within tDetach.
DRP Tests

These tests are for USB Type-C Connectors that implement the USB Type-C DRP Connection State Diagram in Figure 4-16. These tests are not applicable to DRPs that implement a Try.SNK State.

TD 4.5.1 DRP Connect Sink Test

A. Purpose:
 1. Verify a DRP transitions through Unattached states to Attached.SRC
 2. Verify a DRP transitions to Unattached.SNK when the link partner is removed

B. Applicability:
 1. This test is applicable when Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SNK is NO and Type_C_Implements_Try_SRC is NO

C. Asserts:
 1. 4.5.2.2.3.2#2
 2. 4.5.2.2.6.2#4
 3. 4.5.2.2.7.1#1-3
 4. 4.5.2.2.7.2#1.5
 5. 4.5.2.2.8.1#2,3-7
 6. 4.5.2.2.8.2#2-5
 7. 4.5.2.2.10.2#2
 8. 4.8.3#1
 9. 4.8.4#1

D. Conditions:
 1. CVS emulates USB PD 2.0 5A Active Cable
 2. CVS emulates USB PD 3.0 5A Active Cable

 Procedure:
 1. If VIF field Type_C_Sources.Vconn is NO, CVS verifies that the PUT does not source Vconn for the remainder of the test.
 2. CVS transitions to Unattached.SNK
 3. CVS waits 5ms
 4. For a PUT_R:
 a. CVS terminates one CC pin with Ra for the duration of the test.
 b. CVS emulates an Active Emarked cable with the first Condition from section D above
 i. PUT applies Rp simultaneously on both CC pins
 d. CVS waits 80ms
 c. CVS verifies PUT has applied Rp since step 2.b
 f. CVS transitions to Disabled except for one CC maintaining Ra
 g. CVS verifies PUT transitions to Unattached.SNK
 h. Wait 750ms.
 i. CVS transitions to Unattached.SNK
 5. CVS verifies:
 a. PUT attaches Rp within max dcSRC.DRP x max tDRP
 b. After tCCDebounce, PUT supplies VBUS within tVBUSON
 c. PUT sources current at the level it advertises with Type-C Current
 5.6. Vconn_tested = false
 5.7. If PUT supports USB PD:
 a. CVS verifies that:
 i. PUT stabilizes VBUS before initiating USB PD communications
 ii. CVS and PUT negotiate a contract.
 b. If PUT source capabilities include a Max Current > 3 A:
i. CVS verifies that for a PUT_R, it supplies Vconn within $t_{VconnON}$
ii. $V_{conn_tested} = true$

6.8. If PUT supports USB 3.1 DFP:
 a. CVS verifies that:
 i. PUT functionally connects the SS pairs within $1\text{second} \leq 80\text{ms}$
 ii. For a PUT_R and not V_{conn_tested}:
 01. It supplies V_{CONN} within $t_{VCONNON}$
 02. $V_{conn_tested} = true$
 b. CVS loads 1W on Vconn
 c. CVS waits 1s

2.9. If the PUT is a PUT_V and not V_{conn_tested}:
 a. CVS verifies that for a PUT_R, it supplies Vconn within $t_{VconnON}$

6.10. CVS transitions to Disabled
4.11. CVS verifies that PUT transitions to Unattached.SNK within t_{Detach}.
 a. If PUT supports USB 3.1 DFP, V_{conn} remained on until after step 10
 b. PUT_V removes Vconn within $t_{VconnOFF}$
 c. PUT removes V_{BUS} within $t_{VbusOFF}$
 d. PUT presents Rd terminations on its through CC pin

4.12. The CVS continues the test with step 2, using the next Condition from section D above

TD 4.5.2 DRP Connect SNKAS Test

A. Purpose:
 1. Verify a DRP transitions to Attached.SRC when connected to a SNKAS

B. Applicability:
 1. This test is required for VIF field Type_C_State_Machine set to DRP and Type_C_Implements_Try_SNK is NO and Type_C_Implements_Try_SRC is NO.

C. Asserts
 1. See TD 4.14

D. Procedure:
 1. CVS transitions to Unattached.Accessory
 2. CVS waits 5ms
 3. CVS verifies that PUT attaches Rd within max $d_{SRC_DRP} \times max \ t_{DRP}$
 4. If PUT is a PUT_C and Ra is attached to its Vconn pin:
 a. Complete steps 4.12–4.16.
 b. Skip to step 42.
 5. CVS transitions to Unattached.SNK after min $d_{SRC_DRP} \times min \ t_{DRP}$.
 6. CVS verifies that PUT attaches Rp within max $d_{SRC_DRP} \times max \ t_{DRP}$
 7. CVS verifies that PUT transitions to Attached.SRC after $t_{CC_Debounce}$:
 a. PUT supplies V_{BUS} within t_{VbusON}
 b. If PUT supports USB PD:
 i. V_{BUS} reaches v_{Safe5V} before initiating USB PD communications
 8. CVS transitions to Disabled
 9. CVS verifies that PUT transitions to Unattached.SNK within t_{Detach}.
 a. PUT removes V_{BUS} within $t_{VbusOFF}$
 b. PUT presents Rd terminations on its through CC pin
 i. For a PUT_R, verify both CC pins terminated to Rd
 10. For a PUT_C the test is over.
 11. CVS terminates one CC pin with Ra to look like an Emarked cable for the duration of the test.
 12. Repeat steps 1–23.
 13. CVS transitions to PoweredAccessory after max $t_{CC_Debounce}$
If PUT has VIF field Type_C_Is_Vconn_Powered_Accessory set to YES then the test is over.

CVS transitions to Try.SNK and starts tDRPTry

CVS verifies PUT attaches Rp within tPDDebounce min and tPDDebounce max + tDRPTransition

Repeat steps 67-82.

TD 4.5.3 DRP Connect Source Test

A. Purpose:
 1. Verify a DRP transitions through Unattached states to Attached.SNK

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is DRP and and
 Type_C_Implements_Try_SRC is NO and Type_C_Implements_Try_SNK is NO.

C. Asserts:
 1. 4.5.2.2.3.2#1-2
 2. 4.5.2.2.4.2#2
 3. 4.5.2.2.6.2#4
 4. 4.5.2.2.9.1#1-3
 5. 4.5.2.2.9.2#1-2
 6. 4.5.2.2.10.1#1-2
 7. 4.5.2.2.10.2#2
 8. 4.8.3#1
 9. 4.8.4#1

D. Procedure:
 1. CVS transitions to Unattached.SRC
 2. CVS waits 5ms
 3. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test, except when CVS is in Disabled.
 4. CVS verifies:
 a. PUT attaches Rd within max dcSRC.DRP x max tDRP
 i. For a PUT_R, both CCs are terminated with Rd.
 5. CVS waits max tDRP
 6. CVS verifies PUT has applied Rd continuously since step 44
 7. CVS transitions to Disabled for 100ms
 8. CVS verifies PUT transitioned to Unattached.SRC within step 67
 9. Wait 750ms.
 10. CVS transitions to Unattached.SRC
 11. Wait 5ms
 12. CVS verifies:
 a. PUT attaches Rp,Rd within max dcSRC.DRP x max tDRP
 i. For a PUT_R, both CCs are terminated with Rd.
 13. CVS transitions to Attached.SRC after max tCCDebounce.
 14. CVS verifies PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 d. For a PUT_R, VCONN is not supplied
 15. CVS transitions to Disabled
 16. CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires
 a. PUT ceases data communication
TD 4.5.4 DRP Connect DRP Test

A. Purpose:
1. Verify a DRP transitions to an attached state
2. Verify a DRP can support varying times of tDRP and dc\textsubscript{SRC}\textsubscript{DRP}

B. Applicability
1. This test is required when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SRC is NO and Type_C_Implements_Try_SNK is NO.

C. Asserts
1. 4.5.2.2.7.2\#1
2. 4.5.2.2.8.1\#7
3. 4.5.2.2.9.1\#1-3
4. 4.5.2.2.9.2\#2
5. 4.5.2.2.10.1\#1-2
6. 4.5.2.2.10.2\#1
7. 4.8.3\#1

D. Timing Conditions:
1. tDRP = 50ms, dc\textsubscript{SRC}\textsubscript{DRP} = 30%
2. tDRP = 75ms, dc\textsubscript{SRC}\textsubscript{DRP} = 30%
3. tDRP = 100ms, dc\textsubscript{SRC}\textsubscript{DRP} = 30%
4. tDRP = 50ms, dc\textsubscript{SRC}\textsubscript{DRP} = 50%
5. tDRP = 75ms, dc\textsubscript{SRC}\textsubscript{DRP} = 50%
6. tDRP = 100ms, dc\textsubscript{SRC}\textsubscript{DRP} = 50%
7. tDRP = 50ms, dc\textsubscript{SRC}\textsubscript{DRP} = 70%
8. tDRP = 75ms, dc\textsubscript{SRC}\textsubscript{DRP} = 70%
9. tDRP = 100ms, dc\textsubscript{SRC}\textsubscript{DRP} = 70%

E. Procedure:
1. CVS uses Condition 1 above for tDRP and dc\textsubscript{SRC}\textsubscript{DRP}
2. CVS transitions to Unattached.SRC for (dc\textsubscript{SRC}\textsubscript{DRP} x tDRP),
 a. CVS monitors CCs for Rd and transitions to AttachedWait.SRC if it is detected
 b. If Rd is present for tCCDebounce:
 i. CVS transitions to Attached.SRC.
 ii. Skip to step 9.
3. CVS transitions to Unattached.SNK for tDRP – (dc\textsubscript{SRC}\textsubscript{DRP} x tDRP),
 a. CVS monitors CCs for Rp and transitions to AttachedWait.SNK if it is detected.
 b. If Rp is present for tCCDebounce continue to step 4.
 c. If the PUT has reached this step less than 5 times since step 1, transition to step 2.
4. CVS verifies PUT transitions to Attached.SRC:
 a. PUT advertises V\textsubscript{BUS} capability over Rp
 b. PUT sources V\textsubscript{BUS} within tCCDebounce + tV\textsubscript{BUS}On
 c. If PUT supports USB PD:
 i. PUT stabilizes V\textsubscript{BUS} before initiating USB PD communications
 ii. PUT waits for tDRPHold before initiating USB PD Swap communications
5. CVS transitions to Disabled
6. CVS verifies that PUT transitions to Unattached.SNK within tDetach.
 a. Vbus reaches vSave0V before tV\textsubscript{BUS}OFF expires
 b. PUT ceases PD communications
 c. PUT terminates CCs with Rd
 i. If PUT is a PUT_R, it terminates both CCs with Rd
7. CVS transitions to Unattached.SRC
For a PUT_R, one CC is terminated with Ra.

CVS transitions to Attached.SRC
8. CVS verifies PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement
 b. If PUT supports PD, CVS and PUT establish a PD contract.
 i. PUT starts data communications on its SuperSpeed pairs.
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its D+/D- pair.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its data signaling.
 e. For a PUT_R, VCONN is not supplied

CVS verifies PUT:
11. a. If UUT_Device_Type is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If Responds_To_Discov_SOP is YES:
 01 Transmits valid Responder ACK messages.

CVS increases Vbus voltage by 0.1V.
13. a. 1.5 V over Vbus.
 b. CVS behaves as though it is in Attached.SRC as long as PUT is in Attached.SNK.
 c. CVS removes Rp, presents Rd with its CCs and sources Vbus source to meet 3.7V at the PUT connector.

CVS verifies PUT remains in Attached.SNK.
14. a. PUT maintains Rd on its CC
 b. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.

CVS removes Rp and asserts Rd. CVS USB 2.0 and USB 3.1 signaling behaves as though it is in Attached.SRC as long as PUT is in Attached.SNK.
15. a. 1.5 V over Vbus.
 b. CV stops trying Attached.SRC and signals AttachedSNKWait100ms.
 c. CVS verifies PUT maintained Attached.SNK.
 i. PUT maintains Rd on its CC
 ii. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.
 iii. PUT does not source Vbus

Continue to step 15.

CVS verifies PUT transitions to AttachWait SRC.Wait 500ms.
16. a. PUT applies and maintains Rp on its CC
 b. For a PUT_R, Rp is applied on both CCs
 c. PUT does not source Vbus
 d. All data signaling ceases

CVS verifies PUT sources Vbus after tCCDebounce and Vbus is in vSafe0V, and before tVbusON expires.
17. a. 4.5.2.2.3.2
 b. 4.5.2.2.5.1#2-3,5

56
D. Procedure:

1. **CVS transitions to Unattached.SNK**
2. **CVS waits 5ms**
3. **CVS verifies:**
 a. PUT presents Rp within tDRP – dcSRC.DRP x tDRP
 b. PUT transitions from Rd to Rp within tDRPTransition
 c. PUT transitions to Attached.SRC after tCCDebounce:
 i. PUT sources Vbus within tVbusON.
4. **CVS transitions to Try.SRC.**
5. **CVS verifies that PUT transitions to Unattached.SNK within tDetach.**
6. **CVS transitions to Attached.SRC after min tPDDebounce.**
7. **CVS verifies that PUT transitions to Attached.SNK:**
 a. PUT sinks current according to CVS advertisement.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If VIF field PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
8. **CVS transitions to Disabled**
9. **CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires:**
 a. PUT data communication has ceased.

TD 4.5.6 DRP Connect Try.SNK DRP Test

A. Purpose:
1. Verify a DRP transitions to Attached.SRC according to spec

B. Applicability:
1. This test applies when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SRC is NO and Type_C_Implements_Try_SNK is NO

C. Asserts:
1. TBD

D. Procedure:

1. **CVS transitions to Unattached.SRC**
2. **CVS waits 5ms**
3. **CVS verifies PUT:**
 a. Presents Rd within max dcSRC.DRP x max tDRP
 b. Transitions from Rp to Rd within tDRPTransition
 c. Applies Rd for tCCDebounce
4. **CVS transitions to Try.SNK.**
5. **CVS verifies PUT attaches Rp within tPDDebounce min and tPDDebounce max + tDRPTransition**
6. **CVS verifies that PUT transitions to Attached.SRC after tCCDebounce:**
 a. PUT source Vbus with tVbusON.
 b. If PUT supports PD:
i. PUT and CVS negotiate an explicit contract.
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.

6. CVS transitions to Disabled
7. CVS verifies that PUT transitions to Unattached.SNK within tDetach:
 a. PUT stops sourcing Vbus within VbusOFF
 b. PUT data communication has ceased.

Try.SRC DRP Tests

TD 4.6.1 Try.SRC DRP Connect Source Test

A. Purpose:
 1. Verify a Try.SNK DRP transitions to Attached.SNK according to spec
 2. Verify that removing VBUS transitions the PUT to Unattached.SNK

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SRC is YES

C. Asserts:
 1. TBD

D. Procedure:

 1. CVS transitions to Unattached.SRC
 2. CVS waits 5ms
 3. For a PUT_R, CVS terminates one CC pin with Ra in any state other than Disabled for the remainder of the test.
 4. CVS transitions to Attached.SRC after tCCDebounce:
 5. CVS verifies that PUT transitions to Try.SRC after Vbus is present.
 a. PUT removes Rd and applies Rp.
 6. CVS transitions to Unattached.SRC within tDetach -- 1ms, but Vbus does not reach vSafe0V until the max tVbusOFF:
 7. CVS verifies that PUT transitions to TryWait.SNK after tDRPTry after tTryTimeout, after tCCDebounce:
 a. PUT removes Rp and applies Rd.
 8. CVS verifies that PUT transitions to Attached.SRC after max tCCDebounce.
 9. CVS verifies that PUT transitions to Attached.SNK when Vbus reaches vSafe5V:
 a. PUT sinks current according to CVS advertisement.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If VIF field PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 e. For a PUT_R, VCONN is not supplied
 10. CVS transmits Discover ID PD messaging for 200ms.
 11. CVS verifies that PUT:
a. If UUT_Device_Type is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If Responds_To_Discover_SOP is YES:
 Transmits valid Responder ACK messages.

b. Remains in Attached.SNK during and for 500ms after step 6.

TD 4.6.2 Try.SRC DRP Connect DRP Test

A. **Purpose:**
 1. Verify a DRP that transitions to Try.SRC transitions through to an Attached state
 2. Verify a DRP can support varying times of tDRP and dc_SRC.DRP

B. **Applicability**
 1. This test is required when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SRC is YES.

C. **Asserts**
 1. 4.5.2.2.3.1#1-2
 2. 4.5.2.2.3.2#1
 3. 4.5.2.2.4.1#1-2
 4. 4.5.2.2.4.2#3
 5. 4.5.2.2.5.1#2-3,5-6
 6. 4.5.2.2.5.2#1
 7. 4.5.2.2.6.1#1-3
 8. 4.5.2.2.6.2#1
 9. 4.5.2.2.7.1#1-3
 10. 4.5.2.2.7.2#6
 11. 4.5.2.2.11.1#1-2
 12. 4.5.2.2.11.2#2
 13. TBD

D. **Timing Conditions:**
 1. tDRP = 50ms, dc_SRC.DRP = 30%
 2. tDRP = 75ms, dc_SRC.DRP = 30%
 3. tDRP = 100ms, dc_SRC.DRP = 30%
 4. tDRP = 50ms, dc_SRC.DRP = 50%
 5. tDRP = 75ms, dc_SRC.DRP = 50%
 6. tDRP = 100ms, dc_SRC.DRP = 50%
 7. tDRP = 50ms, dc_SRC.DRP = 70%
 8. tDRP = 75ms, dc_SRC.DRP = 70%
 9. tDRP = 100ms, dc_SRC.DRP = 70%

E. **Procedure:**
 1. CVS uses Condition 1 above for tDRP and dc_SRC.DRP
 2. For a PUT_R, one CC is terminated with Ra for the test.
 3. CVS transitions to Unattached.SRC for (dc_SRC.DRP x tDRP)
 a. CVS monitors for the presence of Rd and transitions to AttachedWait.SRC if it
 is detected.
 b. If Rd is present for min tCCDebounce:
 i. CVS keeps tCCDebounce timer running
 ii. CVS transitions to Attached.SRC
iii. If vSafe5V is present before tCCDebounce max expires, CVS verifies that PUT attaches Rps within tDetach of tCCDebounce expiration.
iv. Else, CVS verifies PUT attaches Rps within tDetach of vSafe5V detection.
v. CVS transitions through Unattached.SNK to AttachWait.SNK for max tCCDebounce
vi. Skip to step 5

4. CVS transitions to Unattached.SNK for tDRP – (dcSRC.DRP x tDRP).
 a. CVS monitors for the presence of Rp and transitions to AttachedWait.SNK if it is detected.
 b. If Rp is present for tCCDebounce:
 i. CVS transitions to Attached.SNK.
 ii. Continue to step 5.
 c. If the PUT has reached this step less than 5 times since step 1, transition to step 3.

5. CVS verifies PUT transitions to Attached.SRC:
 a. PUT sources Vbus within tVbusON.
 b. If PUT supports USB PD:
 i. PUT stabilizes VBUS before initiating USB PD communications
 ii. PUT waits for tDRPHold before initiating USB PD Swap communications
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 e. For a PUT_V, VCONN is supplied

6. CVS transitions to Disabled

7. CVS verifies that PUT transitions to TryWait.SNK before VBusOFF expires:
 a. PUT ceases all data communications

8. CVS verifies that PUT transitions to Unattached.SRC after tPDDebounce and then within max dcSRC.DRP x max tDRP.

9. Wait 750ms.

10. CVS continues to Step 1 with the next Condition listed above.

TD 4.6.3 Try.SRC DRP Connect Try.SRC DRP Test

A. Purpose:
 1. Verify a Try.SRC DRP transitions to an Attached state according to spec
 2. Verify that a Try.SRC DRP will connect with another Try.SRC DRP

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SRC is YES

C. Asserts:
 1. TBD

D. Procedure:
 1. CVS transitions to Unattached.SNK
 2. CVS waits 5ms
 3. CVS verifies:
 a. PUT presents Rp within max dcSRC.DRP x max tDRP
 b. PUT transitions from Rd to Rp within tDRPTransition
 4. CVS transitions to AttachWait.SNK
 5. CVS verifies PUT transitions to Attached.SRC after tCCDebounce:
 a. PUT sources Vbus within tVbusON
CVS transitions to Try.SRC.

6.7 CSV verifies PUT transitions to TryWait.SNK within 50 ms after CVS removes Rd.

6.8 CVS transitions to Attached.SRC after \textit{max \textit{tPDDebounce} + CCTryDebounce}.
 a. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.

6.9 CVS verifies PUT to Attached.SNK:
 a. PUT maintains Rd on its CC.
 b. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.

6.10 CVS programs Vbus source to meet 3.7V at the PUT connector.

7.1 CVS verifies PUT remains in Attached.SNK:
 a. PUT maintains Rd on its CC.
 b. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.

7.2 CVS verifies PUT transition to Attached.SNK:
 a. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 b. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 c. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.

10. CVS programs Vbus source to meet 3.7V at the PUT connector.

11. CVS verifies PUT remains in Attached.SNK:
 a. PUT maintains Rd on its CC.
 b. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.

12. CVS removes Rps and asserts Rd. CVS USB 2.0 and USB 3.1 signaling behaves as though it is in Attached.SRC as long as PUT is in Attached.SNK.

13. CVS decreases Vbus voltage by 0.1V.
 a. Wait 100ms.
 b. If PUT removes Rd or Vbus source voltage is below 800mV, continue to step 13.
 c. CVS verifies PUT maintained Attached.SNK:
 i. PUT maintains Rd on its CC.
 ii. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.
 iii. PUT does not source Vbus.
 d. Continue to step 13.

14. CVS verifies PUT transitions to AttachWait.SRC:
 a. PUT applies and maintains Rp on its CC.
 b. PUT does not source Vbus.
 c. All data signaling ceases.

15. CVS removes Vbus source and Rps and applies Rd.

16. CVS verifies that PUT sources Vbus after tCCDebounce and Vbus is in vSafe0V, and before tVbusON expires.

17. CVS transitions to Disabled.

TD 4.6.4 Try.SRC DRP Connect Try.SNK DRP Test

E. Purpose:
 1. Verify a Try.SRC DRP transitions to Attached.SRC according to spec.

F. Applicability:
 1. This test applies when VIF field Type.C_State_Machine is DRP and Type.C_Implements.Try_SRC is YES.

G. Asserts:
 1. TBD.

H. Procedure:
 1. CVS transitions to Unattached.SRC
 2. CVS waits 5ms
 3. CVS verifies PUT:
 a. Presents Rd within max dcSRC.DRP x max tDRP
 b. Transitions from Rp to Rd within tDRPTransition.
 4. CVS transitions to AttachWait.SRC.
Compliance Rev 0.2080

4.5. CVS verifies PUT keeps Rd attached in since step 3 for tCCDebounce
4.6. CVS transitions to Try.SNK
4.7. CVS verifies PUT attaches Rp after tPDebounce
4.8. CVS waits max tDRPTry.
4.9. CVS verifies that PUT and CVS attach with PUT in Attached.SRC:
 a. PUT source Vbus with tVbusON.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
4.10. CVS transitions to Disabled
4.11. CVS verifies that PUT transitions to Unattached.SNK within tDetach:
 a. PUT stops sourcing Vbus within tVbusOFF
 b. PUT data communication has ceased.

TD 4.6.5 Try.SRC DRP Connect Sink Test

A. Purpose:
 1. Verify a Try.SRC DRP transitions to Attached.SRC according to spec
 2. Verify a PUT transitions to Unattached.SNK when Sink removed
B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SRC is YES
C. Asserts:
 1. 4.4.2#1-3
 2. 4.5.2.2.6.1#1-3
 3. 4.5.2.2.6.2#1
 4. 4.5.2.2.7.1#1-3
 5. 4.5.2.2.7.2#1,5
 6. 4.5.2.2.8.1#2,4-10
 7. 4.5.2.2.8.2#1
 8. 4.6.2.1#3
 9. 4.6.2.4#1,2
D. Conditions:
 1. CVS emulates USB PD 2.0 5A Active Cable
 2. CVS emulates USB PD 3.0 5A Active Cable
D.1. Procedure:
 1. If VIF field Type_C_Sources_Vconn is NO, CVS verifies the PUT does not source
 Vconn for the remainder of the test
 2. CVS transitions to Unattached.SNK.
 3. CVS waits 5ms
 4. For a PUT_R:
 a. CVS terminates one CC pin with Ra for the duration of the test.
 b. CVS emulates an Active Emarked cable with the first Condition from section D
 above
 b. CVS emulates an Emarked cable that can support 5A current.
 i. PUT applies Rp simultaneously on both CC pins
 d. CVS waits 80ms
 e. CVS transitions to Disabled except for one CC maintaining Ra
 f. CVS verifies PUT transitions to Unattached.SNK
 g. Wait 750ms.
A. Purpose:
1. Verify a Try.SNK PUT transitions to Attached.SRC correctly with SNKAS

B. Applicability
1. This test is required when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SRC is YES

C. Asserts:
1. TBD

D. Procedure:
1. CVS transitions to Unattached.Accessory
2. CVS Wait 5ms
3. CVS monitors CCs for Rd and verifies that Rd is connected within max dcSRC.DRP x max tDRP.
4. If PUT is a PUT_C with an Ra on its plug’s Vconn pin:
 a. Complete steps 4.4-4.16.
 b. Skip to step 4.7
4. If the PUT is a PUT_V and not Vconn tested:
 a. CVS verifies for a PUT_R, it supplies Vconn within tVconnON
 b. CVS transition to Disabled
 c. CVS verifies that PUT transitions to TryWait.SNK within tDetach:
 a. PUT removes Vbus within tVbusOFF
 b. If PUT supports USB 3.1 DFP, it keeps sourcing Vconn until after step 4.10
 c. All clocked signaling has stopped
 d. PUT attaches Rd on its CCs
 d. The CVS continues the test with step 2, using the next Condition from section D above

TD 4.6.6 Try.SRC DRP Connect SNKAS Test
Try.SNK DRP Tests

A. Purpose:
 1. Verify a Try.SNK DRP transitions to Attached.SNK according to spec
 2. Verify that removing VBUSE transitions the PUT to Unattached.SRC

B. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SNK is YES

C. Asserts:
 1. 4.5.2.2.3.2#1
 2. 4.5.2.2.4.1#1-2
 3. 4.5.2.2.4.2#3
 4. 4.5.2.2.5.1#2-3,5-6
 5. 4.5.2.2.5.2#1
 6. 4.5.2.2.6.2#4

D. Procedure:
 1. CVS transitions to Unattached.SRC
 2. CVS waits 5ms
 3. For a PUT_R, CVS terminates one CC pin with Ra in any state other than Disabled for
 the remainder of the test.
 4. CVS verifies:
 a. PUT presents Rd within max dcSRC.DRP x max tDRP
b. PUT transitions from Rp to Rd within tDRPTransition

c. PUT applies Rd for tCCDebounce

4.5. CVS transitions to Attached.SRC

4.5.1. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If VIF field PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 e. For a PUT_R, VCONN is not supplied

4.6. CVS transmits Discover ID PD messaging for 200ms.

4.6.1. CVS verifies that PUT:
 a. If UUT_Device_Type is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If Responds_To_Discov_SOP is YES:
 01 Transmits valid Responder ACK messages.
 b. Remains in Attached.SNK during and for 500ms after step 6.

4.9. CVS transitions to Disabled

4.10. CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires:
 a. PUT data communication has ceased.

TD 4.7.2 Try. SNK DRP Connect DRP Test

A. Purpose:
 1. Verify a DRP that transitions to Try.SNK transitions through to an Attached state
 2. Verify a DRP can support varying times of tDRP and dcSRC.DRP

B. Applicability
 1. This test is required when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SNK is YES.

C. Asserts
 1. 4.5.2.2.3.1#1-2
 2. 4.5.2.2.3.2#1
 3. 4.5.2.2.4.1#1-2
 4. 4.5.2.2.4.2#3
 5. 4.5.2.2.5.1#2-3.5-6
 6. 4.5.2.2.5.2#1
 7. 4.5.2.2.6.1#1-3
 8. 4.5.2.2.6.2#1
 9. 4.5.2.2.7.1#1-3
 10. 4.5.2.2.7.2#6
 11. 4.5.2.2.11.1#1-2
 12. 4.5.2.2.11.2#2

D. Timing Conditions:
 1. tDRP = 50ms, dcSRC.DRP = 30%
 2. tDRP = 75ms, dcSRC.DRP = 30%
 3. tDRP = 100ms, dcSRP.DRP = 30%
 4. tDRP = 50ms, dcSRC.DRP = 50%
 5. tDRP = 75ms, dcSRC.DRP = 50%
 6. tDRP = 100ms, dcSRC.DRP = 50%
 7. tDRP = 50ms, dcSRC.DRP = 70%
8. \(t_{DRP} = 75\text{ms}, \) \(dc_{SRC}.DRP = 70\% \)
9. \(t_{DRP} = 100\text{ms}, \) \(dc_{SRC}.DRP = 70\% \)

E. Procedure:

1. CVS uses Condition 1 above for \(t_{DRP} \) and \(dc_{SRC}.DRP \)
2. For a PUT_R, one CC is terminated with Ra for the test.
3. CVS transitions to Unattached.SNK for \(t_{DRP} \) – \((dc_{SRC}.DRP \times t_{DRP}) \).
 a. CVS monitors CCs for Rp and transitions to AttachedWait.SNK if it is detected
 b. If Rp is present for \(t_{DRP} \):
 i. CVS verifies that PUT attaches Rd after \(t_{CCDebounce} \).
 ii. CVS transitions through Unattached.SRC and AttachWait.SRC to Attached.SRC
 iii. Skip to step 5
4. CVS transitions to Unattached.SRC for \((dc_{SRC}.DRP \times t_{DRP}) \).
 a. CVS monitors CCs for Rd and transitions to AttachedWait.SRC if it is detected.
 b. If Rd is present for longer than \(t_{CCDebounce} \), CVS transitions to Attached.SRC.
 Continue to step 5.
 c. If the PUT has reached this step less than 5 times since step 1, transition to step 3.
5. CVS verifies PUT transitions to Attached.SNK:
 a. If PUT supports USB PD:
 i. PUT stabilizes \(V_{BUS} \) before initiating USB PD communications
 ii. PUT waits for \(t_{DRPHold} \) before initiating USB PD Swap communications
 b. PUT sinks current according to CVS advertisement
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 e. For a PUT_R, \(V_{CONN} \) is not supplied
6. CVS transmits Discover ID PD messaging for 200ms
7. CVS verifies PUT:
 a. If \(UUT_Device_Type \) is not 6:
 i. Responds with valid GoodCRC messages.
 ii. If \(Responds_To_Discov_SOP \) is YES:
 01
 Transmits valid Responder ACK messages.
 b. Remains in Attached.SNK during and for 500ms after step 6.
8. CVS programs \(V_{bus} \) source to meet 3.7V at the PUT connector.
9. CVS verifies PUT remains in Attached.SNK.
 a. PUT maintains Rd on its CC
 b. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained.
10. CVS removes Rps and asserts Rd. CVS USB 2.0 and USB 3.1 signaling behaves as though it is in Attached.SRC as long as PUT is in Attached.SNK.
11. CVS decreases \(V_{bus} \) voltage by 0.1V.
 a. Wait 100ms
 b. If PUT removes Rd or \(V_{bus} \) source voltage is below 800mV, continue to step 12
 c. CVS verifies PUT maintained Attached.SNK
 i. PUT maintains Rd on its CC
 ii. For a PUT that supports USB 3.2 or USB 2.0 signaling, the data signaling is maintained
 iii. PUT does not source \(V_{bus} \)
 d. Continue to step 11
12. CVS verifies PUT transitions to AttachWait.SRC:
 a. PUT applies and maintains Rp on its CC
 i. For a PUT_R, Rp is applied on both CCs
 b. PUT does not source \(V_{bus} \)
TD 4.7.3 Try. SNK DRP Connect Try.SRC DRP Test

E. Purpose:
 1. Verify a Try.SNK DRP transitions to Attached.SNK according to spec

F. Applicability:
 1. This test applies when VIF field Type_C_State_Machine is DRP and
 Type_C_Implements_Try_SNK is YES

G. Asserts:
 1. 4.5.2.2.3.2#2
 2. 4.5.2.2.5.1#2-3.5
 3. 4.5.2.2.5.2#1
 4. 4.5.2.2.6.1#1-3
 5. 4.5.2.2.6.2#1
 6. 4.5.2.2.7.1#1-3
 7. 4.5.2.2.7.2#6
 8. 4.5.2.2.11.1#1-2
 9. 4.5.2.2.11.2#2

H. Procedure:
 1. CVS transitions to Unattached.SNK
 2. CVS waits 5ms
 3. CVS verifies:
 a. PUT presents Rp within tDRP – dcSRC.DRP x tDRP
 b. PUT transitions from Rd to Rp within tDRPTransition
 4. CVS transitions to AttachWait.SNK
 5. CVS verifies PUT keeps Rp attached since step 3 for tCCDebounce
 6. CVS verifies PUT transitions to Try.SNK within tCCDebounce max + tDRPTransition since step 2:
 a. PUT presents Rd
 7. CVS transitions to Unattached.SRC after tPDDebounce, and on to AttachWait.SRC for tCCDebounce
 8. CVS transitions to Attached.SRC;
 9. CVS verifies that PUT transitions to Attached.SNK:
 a. PUT sinks current according to CVS advertisement.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If VIF field PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 10. CVS transitions to Disabled
 11. CVS verifies that PUT transitions to Unattached.SNK before tVBUSOFF expires:
 a. PUT data communication has ceased.
TD 4.7.4 Try. SNK DRP Connect Try.SNK DRP Test

A. Purpose:
1. Verify a Try.SNK DRP transitions to an Attached state according to spec.
2. Verify that a Try.SNK DRP will connect with another Try.SNK DRP.

B. Applicability:
1. This test applies when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SNK is YES.

C. Asserts:
1. TBD.

D. Procedure:
1. CVS transitions to Unattached.SNK.
2. CVS waits 5ms.
3. CVS verifies PUT presents Rp within max dcSRC.DRP x maxtDRP.
4. CVS transitions to AttachWait.SNK.
5. CVS verifies:
 a. PUT keeps Rp attached since step 2.3 for tCCDebounce.
 b. PUT removes Rp and presents Rd.
6. CVS transitions to Unattached.SRC after min tPDDebounce, and on to AttachWait.SRC for max tCCDebounce.
7. CVS transitions to Try.SNK for tDRPTry.
8. CVS verifies PUT presents Rp after tPDDebounce.
9. CVS verifies PUT and CVS transition to Attached.SRC and Attached.SNK:
 a. PUT sources Vbus within tVbusON.
 b. If PUT supports PD:
 i. PUT and CVS negotiate an explicit contract.
 c. If PUT supports USB 3.1:
 i. PUT starts data communications on its SuperSpeed pairs.
 d. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
10. CVS transitions to Disabled.
11. CVS verifies that PUT transitions to Unattached.SNK before tVbusOFF expires:
 a. PUT data communication has ceased.

TD 4.7.5 Try. SNK DRP Connect Sink Test

A. Purpose:
1. Verify a Try.SNK DRP transitions to Attached.SRC state with SNK.

B. Applicability:
1. This test applies when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SNK is YES.

C. Asserts:
1. TBD.

D. Procedure:
1. If VIF field Type_C_Vconn_Source is NO, CVS verifies the PUT does not source Vconn for the remainder of the test.
2. CVS transitions to Unattached.SNK with Ra on one CC. CVS emulates an Active Cable with 5A current capability.
3. CVS waits 5ms.
4. CVS verifies PUT presents Rp within max dSRC.DRP x max IDR.
5. CVS transitions to AttachWait.SNK.
6. CVS emulates an Active Emarked cable with the first Condition from section D above.
7. CVS verifies:
 a. PUT keeps Rp attached since step 2.5 for tCCDebounce.
 b. PUT removes Rp and presents Rd for tIDRPTry + tPDDebounce.
 c. PUT removes Rd and presents Rp for tPDDebounce.
8. CVS verifies PUT and CVS transition to Attached.SRC and Attached.SNK:
 a. PUT sources Vbus within tVbusON.
 b. PUT sources current at the level it advertises with Type-C Current.
 c. Vconn_tested = false.
 d. If PUT supports USB PD:
 i. CVS verifies that:
 1. PUT stabilizes VBUS before initiating USB PD communications.
 2. CVS and PUT negotiate a contract.
 ii. If PUT source capabilities include a Max Current > 3 A:
 1. CVS verifies that for a PUT_R, it supplies Vconn within tVconnON.
 2. Vconn_tested = true.
 e. If PUT supports USB 3.1 DFP:
 i. CVS verifies that:
 1. PUT functionally connects the SS pairs within 80 ms.
 2. PUT starts data communication on the SS pairs.
 1. It supplies VCONN within tVCONNON.
 2. Vconn_tested = true.
 ii. CVS loads 1W on Vconn.
 2a1. CVS waits 1s.
 2a2. CVS loads 1W on Vconn.
 f. Else if PUT supports USB 2.0:
 i. PUT starts data communications on its D+/D- pair.
 g. If the PUT is a PUT_V and not Vconn_tested:
 i. CVS verifies that for a PUT_R, it supplies Vconn within tVconnON.
 6. CVS transitions to Disabled.
 10. CVS verifies that PUT transitions to Unattached.SNK before tVbusOFF expires:
 a. If PUT supports USB 3.1 DFP, it sourced Vconn up until after step 8.
 b. PUT data communication has ceased.
 c. PUT attaches Rd on its CC pins.
 11. The CVS continues the test with step 2, using the next Condition from section D above.

TD 4.7.6 Try.SNK DRP Connect SNKAS Test

E. Purpose:
 1. Verify a Try.SNK PUT transitions to Attached.SRC correctly with SNKAS.
F. Applicability:
 1. This test is required when VIF field Type_C_State_Machine is DRP and Type_C_Implements_Try_SNK is YES.
G. Asserts:
 1. TBD.
H. Procedure:
 1. CVS transitions to Unattached.SNK.
All DRPs Tests

These tests are for USB Type-C Connectors that implement the USB Type-C DRP Connection State Diagram in Figure 4-16 and variations shown in Figure 4-17. USB Type-C Chargers and DFPs that Sink are required to pass these tests.

TD 4.8.1 DRP Connect Audio Accessory Test

A. Purpose:
 1. This test verifies that a DRP can connect with an Audio Accessory according to the USB Type-C spec requirements.

B. Applicability:
1. This test is required for a PUT_R with VIF field Type_C_State_Machine is DRP and Captive_Cable is NO

C. Asserts
 1. 4.5.2.2.6.2#2
 2. 4.5.2.2.14.1#1-3
 3. 4.5.2.2.14.2#1
 4. 4.5.2.2.15.1#1-5
 5. 4.5.2.2.15.2#1

D. Procedure:
 1. CVS present an Audio Accessory by terminating CC pins with Ra
 2. CVS verifies PUT transitions to Unattached.SRC within tDRP – (dcSRC.DRP x tDRP)
 3. If VIF field Type_C_Supports_Audio_Accessory is YES:
 a. CVS verifies PUT transition to AudioAccessory within tCCDebounce
 i. The PUT reconfigures its pins as defined in Appendix A
 ii. The PUT does not drive VBUS or VCONN
 iii. If the PUT sinks current over VBUS, it shall not be more than 500mA
 iv. The PUT applies Rp on at least one CC
 4. If VIF field Type_C_Supports_Audio_Accessory is NO:
 a. Wait tAMETimeout
 5. CVS transitions to Disabled
 6. If VIF field Type_C_Supports_Audio_Accessory is YES:
 a. CVS verifies PUT transitions to Unattached.SRC or Disabled within tCCDebounce.
 i. PUT CCs are terminated with Rp or not terminated

TD 4.8.2 DRP Connect Debug Accessory Test

A. Purpose:
 1. This test verifies that a DRP can connect to a Debug Accessory as appropriate.

B. Applicability:
 1. This test is applicable when VIF field Type_C_State_Machine set to DRP and Captive_Cable is NO

C. Asserts
 1. 4.5.2.2.16.1#1-3
 2. 4.5.3.3.16.2#2
 3. 4.5.2.2.19.1#2

D. Procedure:
 1. CVS present a DTS (Debug and Test Accessory) Sink by terminating CC pins with Rd
 2. CVS verifies PUT transitions to Unattached.SRC within tDRP – (dcSRC.DRP x tDRP)
 3. If VIF field Type_C_Is_Debug_Target_SRC is YES:
 a. CVS verifies PUT sources Vbus after tCCDebounce and within tVbusON.
 4. Else if VIF field Type_C_Is_Debug_Target_SRC is NO or not defined:
 a. CVS verifies PUT does not source Vbus after tCCDebounce expires.

TD 4.8.3 DRP Connect VCONN Accessory Test

A. Purpose:
 1. Verify DRP that supports Alternate Modes attaches to a VCONN powered Accessory as described in the spec

B. Applicability:
 1. This test is applicable when VIF field Type_C_State_Machine set to DRP and Captive_Cable is NO
C. Asserts
1. See TD 4.4.8

D. Procedure:
1. CVS presents 1 CC pin in the vRa range and one in rRd like a VCONN powered Accessory.
2. CVS verifies the PUT transitions to Unattached.SRC within tDRP – (dcSRC.DRP x tDRP).
3. If VIF field Type_C_Implements_Try_SNK is YES:
 a. CVS verifies:
 i. PUT transitions to Try.SNK within tCCDebounce
 ii. PUT transitions to TryWait.SRC within tTryCCDebounce + tDRPTry after entering Try.SNK
4. CVS verifies that PUT transitions to Attached.SRC:
 a. If VIF field Type_C_Implements_Try_SNK is YES:
 i. PUT sources Vbus after tTryCCDebounce and before tTryCCDebounce + tVbusON expires
 b. If VIF field Type_C_Implements_Try_SNK is NO:
 i. PUT sources Vbus after tCCDebounce and before tCCDebounce + tVbusON expires
 c. PUT advertises Vbus capability over Rp
 d. If the PUT supports PD:
 i. PUT and CVS negotiate an explicit contract
 e. If the PUT is a PUT_V:
 i. PUT sources Vconn after tVconnON
 ii. If PUT has VIF field Attempts_Discov_SOP set to YES:
 01 PUT initiates Alternate Mode discovery with Structured VDMs
5. CVS transitions to Disabled
6. CVS verifies the PUT transitions to Unattached.SNK within tDetach.
 a. PUT stops sourcing VCONN within tVCONNOFF
 b. PUT stops sourcing Vbus within tVbusOFF
 c. PUT attaches Rd on its CCs

Source-Capable Tests

These tests are for any USB Type-C connector that is capable of operating as a Source. Some tests are for connectors that support specific uses like USB PD or legacy connections. Read each test purpose and applicability carefully to determine if the test applies.

If the DUT is a USB Type-C Sink and implements PR_Swap, the following Source-Capable Tests are applicable:

<table>
<thead>
<tr>
<th>TD</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.1</td>
<td>Suspend Test</td>
<td>ID 4.9.1</td>
</tr>
<tr>
<td>4.9.3</td>
<td>PR Swap Test</td>
<td>ID 4.9.3</td>
</tr>
<tr>
<td>4.9.4</td>
<td>VCONN Swap Test</td>
<td>ID 4.9.4</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Alternate Modes Test</td>
<td>ID 4.9.5</td>
</tr>
</tbody>
</table>

The CVS and PUT swap initial roles in each test to connect up to Attached.SRC and Attached.SNK. Then the CVS initiates PR_Swap to transition the PUT into Attached.SRC. The CVS follows the test steps in each test from the point that the PUT enters Attached.SRC. Note that this type of product scheme is discouraged since it will defy user-expectation that the product will charge a dead battery.
TD 4.9.1 Source Suspend Test

A. Purpose:
 1. Verify a Source that continues sourcing VBUS during suspend also continues sourcing VCONN.

B. Applicability:
 1. This test is applicable when VIF field Type_C_Can_Act_as_Host is YES and Host_Suspend_Supported = YES and the PUT is a PUT_V.

C. Asserts:
 1. 4.6.1.2#1

D. Procedure:
 1. CVS transitions to Unattached.SNK
 2. CVS presents Ra on one CC for the duration of the test and simulates an Emarked Active Cable connected on the CC.
 3. CVS and PUT transition through Type-C Connection States to Attached.SNK and Attached.SRC
 4. CVS verifies that the PUT sources Vconn within tVconnON
 5. CVS sinks 20-100 mW over VCONN
 6. If PUT is USB 3.1 capable:
 a. CVS and PUT link to U0.
 b. The Operator suspends the link using whatever method is available. If the PUT is attached to a PC, the Operator clicks a USB31CV prompt
 c. CVS verifies that if the PUT still provides VBUS, it must also continue to source VCONN
 d. The Operator resumes the link using whatever method is available.
 7. If PUT is USB 2.0 capable:
 a. CVS and PUT enter HS/FS/LS Default state.
 b. The Operator suspends the link using whatever method is available. If the PUT is attached to a PC, the Operator clicks a USB31CV prompt
 c. CVS verifies that if the PUT still provides VBUS, it must also continue to source VCONN
 d. The Operator resumes the link using whatever method is available.

TD 4.9.2 USB Type-C Current Advertisement Test

A. Purpose:
 1. Verify a USB Type-C PUT advertises an Rp value in the legal range
 2. Verify a USB Type-C and PD PUT advertises an Rp of at least 1.5 A while a contract exists.

B. Applicability:
 1. This test is applicable when VIF field Type_C_State_Machine is DRP or SRC

C. Assert:
 1. 4.6#1
 2. 4.6.2.1#4
 3. 4.6.2.2#1
 4. 4.6.2.3#1,2
 5. 4.6.2.4#3
 6. 4.7#8
 7. 4.8.1#1-4
D. Procedure:

1. CVS transitions to Unattached.SNK
2. CVS verifies that PUT applies Rp at a voltage range within vRd-USB or vRd-1.5 or vRd-3.0 range.
3. CVS and PUT transition into Attached.SNK and Attached.SRC

4.1. Wait tVbusON
4.5. If the PUT supports USB BC 1.2:
 a. If the BC 1.2 PUT is capable of providing 1.5 A, CVS verifies Rp is in the vRd-1.5 or vRd-3.0 range within tVbusON.

5.6. If the PUT supports USB PD:
 a. CVS adds one CC terminating Ra
 b. CVS disables any USB PD transmission.
 c. CVS reads PUT Source Capabilities.
 i. For a PUT_R:
 01 CVS verifies no Source PDOs advertise more than 3 A current.
 ii. If the PUT 5V PDO reports a max current of 3 A or higher:
 01 CVS checks Rp is in the vRd-3.0 range
 iii. ELSE If the PUT 5V PDO reports a max current of 1.5 A or higher:
 01 CVS checks Rp is in the vRd-1.5 range
 iv. ELSE If the PUT 5V PDO reports a max current of default or higher:
 01 CVS checks Rp is in the vRd-USB range.
 d. CVS transitions to Disabled
 e. Wait 750ms.
 f. CVS transitions to Unattached.SNK and applies Ra on one CC.
 g. CVS and PUT transition to Attached.SNK and Attached.SRC.
 h. CVS enables USB PD SOP and SOP’ transmission.
 i. For a PUT_R:
 i. CVS responds to PUT Discover Identity as a cable with a max current of 3 A.
 ii. CVS verifies that PUT advertises Source Capabilities with a max current of 3 A or less.
 j. CVS verifies:
 i. CVS and PUT successfully negotiate an Explicit Contract (5V at max current advertised).
 ii. PUT advertises Rp in the 1.5 A or 3.0 A range.

TD 4.9.3 Source PR_Swap Test

A. Purpose:
 1. Verify a PUT with PD PR_Swap support follows specification requirements
B. Applicability:
 1. This test is applicable if VIF field Accepts_PR_Swap_As_Src is set to YES
C. Asserts:
 1. 4.5.2.2.5.1#2,4,7
 2. 4.5.2.2.8.2#7,8
D. VIF Fields Used:
 1. Accepts_PR_Swap_As_Src
 2. Accepts_PR_Swap_As_Snk
E. Data Conditions:
 1. PUT supports USB 3.1 as DFP
 2. PUT supports USB 2.0 as DFP

F. Procedure:
 1. CVS transitions to Unattached.SNK
 2. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test. CVS emulates an Emarker Active Cable on the CC terminated with Ra.
 3. CVS verifies PUT transitions to Attached.SRC
 4. CVS transitions to Attached.SNK.
 5. CVS and PUT initiate the next PUT supported Data Condition above if applicable.
 6. CVS initiates and together with PUT completes PD PR_Swap request
 7. CVS verifies:
 a. PUT terminates the CC to ground through Rd
 b. PUT maintains data role
 c. PUT stops supplying VBUS
 d. PUT_V maintains VCONN supply
 8. CVS transitions to Disabled
 9. CVS verifies PUT transitions to Unattached before VBUSOFF
 a. If Type_C_State_Machine is SRC, CVS verifies PUT applies Rp
 b. If Type_C_State_Machine is DRP or SNK, CVS verifies PUT applied Rd
 10. CVS continues to Step 1 until all PUT supported Data Conditions are exhausted

TD 4.9.4 Source VCONN Swap Test

A. Purpose:
 1. Verifies a PUT that supports PD implements a VCONN swap according to requirements

B. Applicability:
 1. This test is applicable to a PUT_V when VIF field VCONN_Swap_To_Off_Supported is YES

C. Asserts:
 1. 4.5.2.2.8.1#12
 2. 4.5.2.2.8.1#13
 3. 4.5.2.2.8.1#14

D. Procedure:
 1. CVS transitions to Unattached.SNK
 2. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test. CVS emulates an Emarker Active Cable on the port.
 3. CVS verifies:
 a. PUT transitions to Attached.SRC
 b. PUT sources Vconn within tVconnON
 4. CVS transitions to Attached.SNK.
 5. CVS and PUT complete the PD VCONN_Swap request
 6. If the PUT was sourcing VCONN when CVS initiated the swap request, CVS verifies the PUT stops sourcing VCONN within tVCONNOFF after the CVS transmits PS_RDY
 7. If VIF field VCONN_Swap_To_On_Supported is YES:
 a. CVS and PUT complete the PD VCONN_Swap request
 b. CVS verifies the PUT starts sourcing VCONN before sending PS_RDY

TD 4.9.5 Source Alternate Modes Test

A. Purpose:
 1. Verifies a Source supports Alternate Modes according to requirements

B. Applicability:
1. Test only applies to PUTs that support PD and Alternate Modes as indicated by VIF fields Type_C_Is_Alt_Mode_Controller set to YES

C. Asserts:
1. 5.1#1-3
2. 5.1.2#1
3. 5.1.2.1#1-4
4. 5.1.2.2#1-4,6
5. 5.1.2.2#5
6. 5.1.3#1

D. CVS Supported Alternate Modes:
1. Display_AdapterPort

E. Data Conditions:
1. PUT supports USB 3.1
2. PUT supports USB 2.0

F. Procedure:
1. CVS transitions to Unattached.SNK
2. CVS attaches Ra to one CC for the duration of the test
3. CVS verifies:
 a. PUT transitions to Unattached.SRC for tCCDebounce
 b. PUT transitions to Attached.SRC
4. CVS transitions to Attached.SNK
5. CVS exposes a USB data interface using the next relevant Data Condition from above.
 Note: Once the CVS and PUT have established USB Data communications, the Operator maintains packet traffic between CVS and PUT via GetDescriptor() every 50ms through USB3CV.
6. CVS and PUT complete PD Explicit Power Contract.
7. CVS verifies PUT does not send any Structured VDMs used for Alternate Modes discovery during PD Explicit Power Contract negotiation.
8. CVS responds to all standard VDM requests with CVS Supported Alternate Mode 1 info
9. If PUT sends Enter Mode:
 a. CVS transitions to Alternate Mode 1 and ACKs the host.
 b. CVS verifies:
 i. PUT follows all electrical constraints for SBU and any reconfigured pins (i.e. USB Safe States).
 ii. For a PUT_R, it follows all electrical constraints for VCONN
 c. CVS transitions to Disabled.
 d. CVS verifies PUT transition to Unattached within iDetach:
 i. If Type_C_State_Machine is DRP, CVS verifies PUT applies Rd
 ii. If Type_C_State_Machine is SRC, CVS verifies PUT applies Rp
 iii. PUT stops sourcing VBUS within tVBUSOFF
 iv. For a PUT_R, it stops sourcing VCONN within tVCONNOFF
10. Continue to step 1 with next CVS Supported Alternate Mode.
11. Continue to step 1 with next Data Condition.

Sink-Capable Tests

These tests are for a USB Type-C connector that is capable of operating as a Sink. Some tests are for connectors that support specific uses like USB PD, Alternate Modes, legacy connections or that use batteries. Read each test purpose carefully to determine if the test applies.

If the DUT is a USB Type-C Source and implements PR_Swap, the following Sink-Capable Tests are applicable:
TD 4.10.3 Sink Suspend Test
TD 4.10.4 Sink PR_Swap Test
TD 4.10.5 Sink VCONN_Swap Test
TD 4.10.6 Sink Alternate Mode Test

The CVS and PUT swap roles in each test to connect up to Attached.SNK and Attached.SRC. Then the CVS initiates PR_Swap to transition the PUT into Attached.SNK. The CVS follows the test steps in each test from the point that the PUT enters Attached.SNK. For TD 4.10.3 Sink Suspend Test, the test steps starting at step C.14.

TD 4.10.1 Sink Power Sub-States Test

A. Purpose:
 1. Verify a Sink uses USB Type-C Current for initial power handshake

B. Applicability:
 1. Test is applicable when VIF field Type_C_State_Machine is DRP or SNK

C. Asserts:
 1. 4.5.2.3.1.1#1,2
 2. 4.5.2.3.1.1#1,2
 3. 4.5.2.3.1.1#1,2
 4. 4.5.2.3.1.1#1,2
 5. 4.5.2.3.1.1#1,2
 6. 4.5.2.3.1.1#1,2
 7. 4.5.2.3.1.1#1,2
 8. 4.5.2.3.1.1#1,2
 9. 4.5.2.3.1.1#1,2

D. Procedure:
 1. CVS presents SS terms and D+D-
 2. CVS transitions to Unattached.SRC state with vRd in vRd_USB range.
 3. The CVS and PUT link to Attached.SRC and Attached.SNK. NOTE: CVS waits sufficiently after Attached.SNK detected to assure a Try.SRC PUT is securely in Attached.SNK.
 4. If Type_C_Power_Source = 1 (Bus/USB-powdered) or 2 (Both), CVS saves default USB power according to PUT type:
 a. If Type_C_Can_Act_As_Device is YES and Type_C_Device_Speed is HS, default USB power is 100 mA.
 b. If Type_C_Can_Act_As_Device is YES and Type_C_Device_Speed is SS or above, default USB power is 150 mA.
 c. If Type_C_Can_Act_As_Device is NO, default USB power is 500 mA.
 5. If Type_C_Power_Source = 0 (SelfExternally-powered), CVS verifies PUT draws < 1 mA for during all load verifications for the entire duration of the test.
 6. CVS verifies the PUT draws no more than default USB power since step 1.
 7. CVS transitions vRd to vRd-1.5 range
 8. CVS verifies:
 a. The PUT draws no more than default USB power before min tPDDebounce.
 b. The PUT draws no more than 1.5 amps after max tPDDebounce.
 9. CVS transitions vRd to vRd_USB range
 10. CVS verifies:
 a. The PUT draws no more than default USB power after max tSinkAdj.
 11. CVS transitions vRd to vRd-3.0 range
 12. CVS verifies:
 a. The PUT draws no more than default USB power before min tPDDebounce.
 b. The PUT draws no more than 3.0 amps after max tPDDebounce.
 13. CVS transitions vRd to vRd-1.5 range
Compliance Rev 0.2080

14. CVS verifies:
 a. The PUT draws no more than 1.5 amps after max tSinkAdj.
15. CVS transitions vRd to vRd-3.0 range
16. CVS verifies:
 a. The PUT draws no more than 1.5 amps before min tPDDebounce
 b. The PUT draws no more than 3.0 amps after max tPDDebounce
17. CVS transitions vRd to vRd-USB range
18. CVS verifies:
 a. The PUT draws no more than default USB power after max tSinkAdj.
19. CVS transitions to Disabled for 200ms.
20. CVS presents SS terms and D+/D-.
21. CVS transitions to Unattached.SRC with vRd in the vRd-1.5 range.
22. The CVS and PUT link to Attached.SRC and Attached.SNK. NOTE: CVS waits sufficiently after Attached.SNK detected to assure a Try.SRC PUT is securely in Attached.SNK.
23. CVS verifies:
 a. The PUT does not draw more than default USB power for min tPDDebounce.
 b. The PUT draws no more than 1.5 amps after max tPDDebounce.
24. If PUT supports USB 3.1 as a device:
 a. CVS enumerates the PUT device at USB 3.1 Gen 1 speed.
 b. For each configuration discovered during enumeration, if the configuration bMaxPower field is greater than 0, CVS verifies that the PUT draws no more than default USB power.
 c. CVS removes ss terms.
25. If PUT supports USB 2.0 as a device:
 a. CVS enumerates the PUT device at USB 2.0.
 b. For each configuration discovered during enumeration, if the configuration bMaxPower field is greater than 0, CVS verifies that the PUT draws no more than default USB power.
26. CVS transitions to Disabled for 200ms.
27. CVS presents SS terms and D+/D-.
28. CVS transitions to Unattached.SRC with vRd in the vRd-3.0 range.
29. CVS and PUT link to Attached.SRC and Attached.SNK
30. CVS verifies:
 a. The PUT draws no more than default USB power before min tPDDebounce.
 b. The PUT draws no more than 3.0 amps after max tPDDebounce.
31. If PUT supports USB 3.1 as a device:
 a. CVS enumerates the PUT device at USB 3.1 Gen 1 speed.
 b. For each configuration discovered during enumeration, if the configuration bMaxPower field is greater than 0, CVS verifies that the PUT draws no more than default USB power.
 c. CVS removes ss terms.
32. If PUT supports USB 2.0 as a device:
 a. CVS enumerates the PUT device at USB 2.0.
 b. For each configuration discovered during enumeration, if the configuration bMaxPower field is greater than 0, CVS verifies that the PUT draws no more than default USB power.

TD 4.10.2 Sink Power Precedence Test

A. Purpose:
 1. Verify a port receiving power negotiations from multiple avenues uses the correct precedence requirements
B. Applicability:
 1. This test is applicable when VIF field Type_C_State_Machine is DRP or SNK
C. Asserts
 1. 4.6#2-4
 2. 4.6.2.1#2

D. Procedure:
 1. CVS transitions to Unattached.SRC advertising USB Default Current with Rp.
 2. CVS and PUT transition to Attached.SRC and Attached.SNK
 3. For a PUT_R, CVS emulates an Emarker cable capable of supporting 5A.
 4. If the PUT Supports USB 2.0 as a device:
 a. CVS enumerates the PUT device at HS
 b. For the first configuration discovered during enumeration, CVS sends
 SetConfiguration(Configuration)
 c. If Type_C_Power_Source = 0 (SelfExternally-powered), CVS verifies:
 i. The PUT draws < 1 mA over Vbus
 ii. USB configuration bmAttributes bit D6 is set to 1
 iii. USB configuration field bMaxPower is set to 0
 d. If Type_C_Power_Source = 1 (BusUFP-powered), CVS Verifies:
 i. The PUT draws no more than the maximum power consumption indicated in the bMaxPower field.
 ii. USB configuration bmAttributes bit D6 is set to 0
 iii. USB configuration field bMaxPower is greater than 0
 e. If Type_C_Power_Source = 2 (Both), CVS verifies:
 i. If USB configuration field bMaxPower is set to 0, the PUT draws < 1 mA over Vbus.
 ii. If USB configuration field bMaxPower is set greater than 0, the PUT draws no more than the maximum power consumption indicated in the bMaxPower field.
 f. Continue to step 4.b and use the next configuration. After the last configuration, continue to the next step.
 5. If the PUT supports BC 1.2:
 a. CVS verifies if detects VDP_SRC on D+ within 1s
 b. CVS provides VDM_SRC on D- while VDP_SRC is present
 c. CVS verifies Sink draws current within BC 1.2 power requirements.
 6. CVS advertises vRd-3.0 on its Rp.
 7. CVS verifies the Sink draws up to 3 A
 8. CVS transitions to Disabled for 200ms.
 9. CVS transitions to Unattached.SRC with Rp in the vRd-USB range
 10. CVS and PUT transition to Attached.SRC and Attached.SNK
 11. If the PUT supports USB 3.1 as a device:
 a. CVS enumerates the PUT device at USB 3.1 Gen 1 speed.
 b. For the first configuration discovered during enumeration, CVS sends
 SetConfiguration(Configuration)
 c. If Type_C_Power_Source = 0 (SelfExternally-powered), CVS verifies:
 i. The PUT draws < 1 mA over Vbus
 ii. USB configuration bmAttributes bit D6 is set to 1
 iii. USB configuration field bMaxPower is set to 0
 d. If Type_C_Power_Source = 1 (BusUFP-powered), CVS Verifies:
 i. The PUT draws no more than the maximum power consumption indicated in the bMaxPower field.
 ii. USB configuration bmAttributes bit D6 is set to 0
 iii. USB configuration field bMaxPower is greater than 0
 e. If Type_C_Power_Source = 2 (Both), CVS verifies:
 i. If USB configuration field bMaxPower is set to 0, the PUT draws < 1 mA over Vbus.
 ii. If USB configuration field bMaxPower is set greater than 0, the PUT draws no more than the maximum power consumption indicated in the bMaxPower field.
f. Continue to step 4.b and use the next configuration. After the last configuration, continue to the next step.

12. If the PUT supports BC 1.2:
 a. CVS verifies it detects VDP_SRC on D+ within 1s
 b. CVS provides VDM_SRC on D- while VDP_SRC is present
 c. CVS verifies Sink draws current within BC 1.2 power requirements.

14. CVS verifies the Sink draws up to 3 A.

15. If the PUT supports USB PD:
 a. CVS advertises vRd-1.5 on its Rp and a Source Capabilities PDO with 5V 1.5A
 b. CVS verifies:
 i. PUT and CVS establish a contract
 ii. After tSinkAdj expires the PUT draws no more than 1.5A
 c. If PUT supports USB 3.1 as a device:
 i. CVS sends Warm Reset and enumerates the PUT device
 ii. For each configuration discovered during enumeration, CVS verifies:
 01 The configuration bmAttributes bit D6 is set to 1
 02 The configuration bMaxPower field is set to 0
 iii. CVS removes ss terms.
 d. If PUT supports USB 2.0 as a device:
 i. CVS resets and enumerates the PUT device at USB 2.0.
 ii. For each configuration discovered during enumeration, CVS verifies:
 01 The configuration bmAttributes bit D6 is set to 1
 02 The configuration bMaxpower field is set to 0
 e. CVS advertises vRd-3.0 on its Rp
 f. CVS verifies the Sink does not draw more than 1.5A current after tSinkAdj + 500ms expires.
 g. CVS transmits a PD Hard Reset.
 h. CVS advertises vRd-USB on its Rp
 i. CVS does not communicate via PD messaging after Hard Reset and D+/D- terms are present.
 j. CVS verifies:
 i. If Type_C_Can_Act_As_Device is YES and Type_C_Device_Speed is HS, PUT sinks power up to 100 mA.
 ii. If Type_C_Can_Act_As_Device is YES and Type_C_Device_Speed is SS or above, PUT sinks power up to 150 mA
 iii. If Type_C_Can_Act_As_Device is NO, PUT sinks power up to 500 mA

TD 4.10.3 Sink Suspend Test

A. Purpose:
 1. Verify a PUT correctly draws power during suspend state

B. Applicability:
 1. This test is applicable when both of the following are true:
 a. VIF field Type_C_State_Machine is DRP or SNK, or UUT_Device_Type is 2 (Provider/Consumer).
 b. VIF field Type_C_Can_Act_As_Device is YES

C. Asserts:
 1. 4.6.1.1#1

D. Procedure:
 1. CVS transitions to Unattached.SRC
 2. CVS and PUT transition to Attached.SRC and Attached.SNK
 3. If the PUT is USB 3.1 Capable:
a. CVS presents ssrx, sstx terms
b. CVS brings PUT through the Link-Up Initialization Sequence (LIS) as defined in the USB 3.1 Link Test Specification to U0.
c. CVS suspends the PUT to U3 with SetPortFeature(PLS=U3)
d. Wait 1 second
e. If the PUT implements BC 1.2 as a sink, CVS verifies the PUT draws suspend current up to 100mA.
f. Else, CVS verifies the PUT draws suspend current as defined in the USB 3.1 and 2.0 specs.
g. CVS removes ssrx, sstx.

4. If the PUT is USB 2.0 Capable:
 a. CVS brings PUT to the HS/FS/LS Default state.
 b. CVS suspends PUT.
 c. Wait 1 second
d. If the PUT implements BC 1.2 as a sink, CVS verifies the PUT draws suspend current up to 100mA.
e. Else, CVS verifies the PUT draws suspend current as defined in the USB 2.0 Spec.

5. CVS transitions to Disabled
6. CVS transitions to Unattached.SRC advertising vRd-1.5 with Rp
7. If the PUT is USB 3.1 Capable:
 a. CVS presents ssrx, sstx terms and brings a 3.1 PUT through the LIS to U0.
 b. CVS suspends the PUT to U3 with SetPortFeature(PLS=U3)
 c. Wait 1 second
d. CVS verifies the PUT draws suspend current up to 1.5 amps.
e. CVS removes ssrx, sstx terms.

8. If the PUT is USB 2.0 Capable:
 a. CVS brings PUT to the HS/FS/LS Default state.
 b. CVS suspends PUT.
 c. Wait 1 second
d. CVS verifies the PUT draws suspend current up to 1.5 amps.

9. CVS transitions to Disabled
10. CVS transitions to Unattached.SRC advertising vRd-3.0 with Rp
11. If the PUT is USB 3.1 Capable:
 a. CVS present ssrx, sstx terms and brings a 3.1 PUT through the LIS to U0.
 b. CVS suspends the PUT to U3 with SetPortFeature(PLS=U3)
 c. Wait 1 second
d. CVS verifies the PUT draws suspend current up to 3 amps.
e. CVS removes ssrx, sstx terms
12. If the PUT is USB 2.0 Capable:
 a. CVS brings PUT to the HS/FS/LS Default state.
 b. CVS transitions PUT to SUSPEND.
 c. Wait 1 second
d. CVS verifies the PUT draws suspend current up to 3 amps.
13. CVS transitions to Disabled
14. If the PUT is PD Capable:
 a. If VIF field Type_C Port On_Hub is YES, CVS prompts the test operator to enter the number of DFP ports on the hub, and CVS notes the number as nHubDFP. CVS then saves pSuspend = 25 + (25 * min(4, nHubDFP)) mW.
 b. Else CVS saves pSuspend = 25 mW.
 c. CVS transitions to Unattached.SRC advertising vRd-3.0 with Rp
 d. CVS negotiates largest current draw contract available from Sink PUT with PD.
 e. Note: If the PUT is USB 3.1 capable, run step 14.b concurrently to 14.c.i, or the PUT may drop to eSS.Disabled since it does not see a link partner.
 f. If the PUT is USB 3.1 capable:
 i. CVS presents ss terms and brings a 3.1 PUT through the LIS to U0.
ii. CVS suspends PUT to U3 with SetPortFeature(PLS=U3)
iii. CVS verifies PUT draws \(\text{power current according to PD Spec.} \leq pSuspend \)

\(\text{If the PUT is USB 2.0 capable:} \)
 i. CVS brings PUT to the HS/FS/LS Default state.
 ii. CVS transitions PUT to SUSPEND
 iii. Wait 1 second
 iv. CVS verifies PUT draws \(\text{current power according to PD Spec.} \leq pSuspend \)

TD 4.10.4 Sink PR_Swap Test

A. Purpose:
 1. Verify that a Sink and Source Capable PUT transitions between Sink and Source correctly according to USB Type-C Connection State Machine

B. Applicability:
 1. This test is applicable when VIF field Accepts.PR_Swap.As_Snk is YES

C. Asserts:
 1. 4.5.2.2.5.1#4,7
 2. 4.5.2.2.5.2#2-3
 3. 4.5.2.2.8.1#3,11

D. Data Conditions:
 1. PUT supports USB 3.1
 2. PUT supports USB 2.0

E. Procedure:
 1. CVS transitions to Unattached.SRC
 2. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test.
 3. CVS verifies PUT transitions to Unattached.SNK for tCCDebounce
 4. CVS transitions to Attached.SRC
 5. CVS verifies PUT transitions to Attached.SNK.
 6. CVS and PUT initiate the next PUT supported Data Condition above if applicable.
 7. CVS initiates and together with PUT completes PD PR_Swap. Note: Please retry if PUT responds with Wait message for up to 10 seconds
 8. CVS verifies:
 a. PUT sources current and asserts Rp on the CC pin connected to the cable
 b. For a PUT_R it does not source VCONN.
 c. PUT maintains its data role
 9. CVS transitions to Disabled
 10. CVS verifies PUT transitions to Unattached within tDetach.
 a. If Type_C_State_Machine is DRP or SRC, CVS verifies that Rp is applied
 b. If Type_C_State_Machine is SNK, CVS verifies that Rd is applied
 c. PUT stops sourcing VBUS within tVBUSOFF (Vbus reaches vSafe0V)
 11. Continue to step one until all supported Data Conditions are exhausted.

TD 4.10.5 Sink VCONN_Swap Test

A. Purpose:
 1. Verify a port sourcing VCONN removes it according to spec requirements.

B. Applicability:
 1. This test is applicable when VIF field VCONN_Swap.To_On_Supported is YES

C. Assert:
 1. 4.5.2.2.5.1#8
 2. 4.5.2.2.5.1#9

82
3. 4.5.2.5.1#10

D. Procedure:
1. CVS transitions to Unattached.SRC
2. CVS terminates one CC pin with Ra for the duration of the test.
3. CVS verifies PUT transitions to Unattached.SNK for tCCDebounce
4. CVS transitions to Attached.SRC
5. CVS verifies PUT transitions to Attached.SNK
6. CVS initiates and together with PUT advances through a PD VCONN_Swap transaction
7. CVS verifies PUT sources VCONN before it sends a FS_RDY to the CVS as the final message in the VCONN_Swap transaction.
8. If VIF field VCONN_Swap_To_Off_Supported is YES:
 a. CVS initiates and together with PUT completes a PD VCONN_Swap transaction.
 b. CVS verifies the PUT stops sourcing VCONN within tVCONNOFF after the CVS sends the FS_RDY to the CVS as the final message in the VCONN_Swap transaction.

TD 4.10.6 Sink Alternate Mode Test

A. Purpose:
1. Verify a PUT that supports Alternate Mode follows spec requirements

B. Applicability:
1. This test is applicable when Type_C_Is_Alt_Mode_Device is YES.

C. Asserts:
1. 5.1#1-3
2. 5.1.2#1-4
3. 5.1.2.1#1-4
4. 5.1.2.2#1-4.6
5. 5.1.2.2#5
6. 5.1.3#1

D. Data Conditions:
1. PUT supports USB 3.1 and Type_C_Port_On_Hub is NO
2. PUT supports USB 2.0

E. Procedure:
1. CVS verifies that VIF field Type_C_Can_Act_As_Device is YES
2. CVS transitions to Unattached.SRC
3. CVS verifies PUT transitions to Unattached.SNK for tCCDebounce
4. CVS transitions to Attached.SRC
5. CVS verifies PUT transitions to Attached.SNK.
6. CVS starts tAMETimeout timer.
7. CVS and PUT initialize USB data protocol using the next relevant Data Condition from above.
8. CVS initiates and together with PUT completes PD Explicit Power Contract.
9. CVS maintains packet traffic with PUT via GetDescriptor() every 50ms.
10. CVS verifies PUT exposes USB Billboard Device Class Interface in Descriptor after tAMETimeout and then within 500ms. Note: If VIF field Type_C_Port_On_Hub is YES, CVS looks for the exposed USB Billboard Device Class Interface in the descriptors of a downstream non-removable port. In this case, tAMETimeout starts from the first status change indicators from the downstream port.
11. CVS sends Discover ID, SVID, and Modes to get the Alternate Modes that PUT supports.
12. CVS sends Enter Mode for a PUT supported Alternate Mode.
13. CVS verifies:
 a. The PUT successfully enters the Alternate Mode with PD messaging before ACKing

83
b. PUT follows all electrical constraints for SBU and any reconfigured pins (i.e. USB Safe States).

c. For a PUT_R, it follows all electrical constraints for VCONN

14. CVS waits 1s

15. CVS sends Exit Mode for the Alternate Mode

16. CVS verifies:
 a. The PUT successfully exits the Alternate Mode before sending the PD messaging response
 b. PUT follows all electrical constraints for SBU and any reconfigured pins (i.e. USB Safe States)

16.18. CVS verifies PUT transition to Unattached within VBUSOFF
 a. If Type_C_State_Machine is DRP or SRC, CVS verifies PUT applies Rp
 b. If Type_C_State_Machine is SNK, CVS verifies PUT applies Rd

17-19. Continue to step 2 with next Data Condition above until supported Data Conditions are exhausted

Miscellaneous Tests

These tests don’t belong in the other categories. The DR_Swap test is required for DRPs and DRDs. The Dead Battery Test is required for all battery-powered products.

TD 4.11.1 DR_Swap Test

Test is required for DRDs that do not implement Type-C DRPs and Type-C DRPs that implement USB communications as a Host or Device. Steps 1-9 are applicable for a Type-C Source as defined in Figure 4-12. Steps 10-15 are applicable for a Type-C Sink as defined in Figure 4-13. All steps are applicable to any port that supports both DR_Swaps as indicated in its VIF.

A. Purpose:
 1. Verify a DRP supports DR_Swap
 2. Verify a Sinking DFP and Charging UFP support DR_Swap
 3. Verify a DRD supports DR_Swap

B. Applicability:
 1. When VIF field Type_C_State_Machine is SNK or DRP and
 DR_Swap_To_DFP_Supported is YES, then test steps 1-9-10 are required.
 2. When VIF field field Type_C_State_Machine is SRC or DRP and
 DR_Swap_To_UFP_Supported is YES, then test steps 1-10-17 are required.
 3. When VIF field field Type_C_Can_Act_As_Host is YES and Type_C_Can_Act_As_Device is YES then:
 a. When VIF field Type_C_State_Machine is SRC then test steps 1-10-17 are required.
 b. When VIF field Type_C_State_Machine is SNK then test steps 1-10-9 are required.
 4. When VIF field Type_C_State_Machine is DRP then:
 a. When VIF field Type_C_Can_Act_As_Host is YES and Type_C_Can_Act_As_Device is NO then test steps 1-9-10 are required.
b. When VIF field Type_C_Can_Act_As_Host is NO and Type_C_Can_Act_As_Device is YES then steps-1, 10-16 are required.

C. Asserts:
1. 4.8.3#2
2. 4.8.4#3

D. Procedure:

Swap to Host:

1. CVS monitors for D+/D- and SS terms throughout the test
 a. If VIF field Type_C_Can_Act_As_Host is YES and Type_C_Can_Act_As_Device is YES:
 i. CVS verifies D+/D- pull-ups (device terminations) are present only when Vbus is present and DUT is in a UFP role
 ii. CVS issues a Warning if SS terms are present before Vbus is present
 b. If VIF field Type_C_Can_Act_As_Host is YES and Type_C_Can_Act_As_Device is NO:
 i. CVS verifies that D+/D- pull-ups (device terminations) are not present for the duration of the test.
 ii. CVS issues a Warning if SS terms are present before Vbus is present
 iii. CVS issues a Warning if SS terms are present when DUT is in a UFP role
 c. If VIF field Type_C_Can_Act_As_Host is NO and Type_C_Can_Act_As_Device is YES:
 i. CVS verifies D+/D- pull-ups (device terminations) and SS terminations are present only when Vbus is present and DUT is in a UFP role
 d. If VIF field Type_C_Can_Act_As_Host is NO and Type_C_Can_Act_As_Device is NO, CVS verifies D+/D- pull-ups (device terminations) and SS terminations are not present for the duration of the test.

2. CVS transitions to Unattached.SRC

3. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test. CVS emulates an Emarker Active Cable on the pin.

4. CVS verifies PUT transitions to Unattached.SNK for at least tCCDebounce

5. CVS transitions to Attached.SRC

6. CVS verifies that PUT transitions to Attached.SNK by tDRPTry + tCCDebounce

7. CVS initiates and together with PUT completes a PD DR_Swap

8. CVS verifies that:
 a. The PUT does not source VBUS
 b. For a PUT_R, it does not source VCONN
 c. The PUT maintains its CC termination
 d. If VIF field Type_C_Can_Act_As_Host is YES:
 i. The PUT USB 3.1 or 2.0 link starts Host communication
 ii. ELSE
 i. The PUT USB 3.1 or 2.0 link has ceased signaling
 e. ELSE
 i. The PUT USB 3.1 or 2.0 link has ceased signaling

8a. CVS verifies that Type_C_Port_On_Hub is NO

8b. CVS initiates and together with PUT completes a PD DR_Swap

8c. CVS verifies that:
 i. The PUT maintains its CC termination state
 ii. If VIF field Type_C_Can_Act_As_Device is YES:
 01 The PUT USB 3.1 or 2.0 link starts Device communication
 iii. ELSE
 01 The PUT USB 3.1 or 2.0 link has ceased signaling

9. CVS transitions to Disabled for 200ms

Swap to Device:

85
11. CVS transitions to Unattached.SNK
12. For a PUT_R, CVS terminates one CC pin with Ra for the duration of the test. CVS emulates an Emarker Active Cable on the pin.
13. CVS verifies that PUT transitions to Attach.SRC within tDRP.DRPA1tch
14. CVS transitions to Attached.SNK
15. CVS initiates and together with PUT completes PD DR_Swap
16. CVS verifies that:
 a. The PUT continues to source VBUS
 b. For a PUT_V it continues to source VCONN
 c. The PUT maintains its CC termination
 d. If VIF field Type_C_Can_Act_As_Device is YES:
 i. The PUT USB 3.1 or 2.0 link starts Device communication
 e. ELSE
 i. The PUT USB 3.1 or 2.0 link has ceased signaling
17. If VIF field DR_Swap_To_DFP_supported is YES:
 a. CVS verifies that Type_C_Prot_On_Hub is NO
 b. CVS initiates and together with PUT completes PD DR_Swap
 c. CVS verifies that:
 i. The PUT maintains its CC termination
 ii. If VIF field Type_C_Can_Act_As_Host is YES:
 01 The PUT USB 3.1 or 2.0 link starts Host communication
 iii. ELSE
 01 The PUT USB 3.1 or 2.0 link has ceased signaling

TD 4.11.2 Sink Dead Battery Test

A. Purpose:
 1. Verify a PUT with a dead battery enters Unattached.SNK

B. Applicability:
 1. This test is applicable to every Battery-powered PUT regardless of its default Type-C State Machine, as indicated by VIF field Port_Battery_Powered set to YES

C. Asserts:
 1. 4.5.2.2.3#1
 2. 4.8.5#1

D. Procedure:
 1. CVS prompts the test operator to verify a dead battery is connected to the PUT.
 Note: For most cases (i.e. laptop, phone, flashlight, power bank) when the battery is “dead” it is not able to power the product’s function and needs to be recharged.
 2. CVS verifies that Rp is never applied on the PUT for the duration of the test
 3. CVS transitions to the Unattached.SRC state with Rp in vRd-USB.
 4. Wait for max tDRP timeout
 5. CVS verifies that the PUT presents Rd termination on through CC pin.
 a. For a PUT_R, check both CC pins for Rd
 6. CVS presents VBUS
 7. CVS waits 1 seconds
 8. CVS verifies that the PUT current draw has not exceeded 500mA.
 9. CVS transitions to Disabled.
10. CVS prompts the test operator to disconnect the dead battery and connect a charged battery if they wish to continue testing.
Hub Port Tests

TD 4.12.1 Hub Port 3.1 Test

This test has been removed.

TD 4.12.2 Hub Port Types Test

A. Purpose:
1. Verify a hub has only one UFP connector

B. Applicability:
1. This test is applicable for a PUT that is part of a hub, as indicated with VIF field Type_C_Port_On_Hub set to YES.
2. For this test, the test operator cycles through each exposed USB Type-C port on the hub under test.
3. This test is only required to be run once per hub or compound device.

C. Asserts
1. 4.7#2,4-7
2. 5.1#4

D. Procedure:
1. Unplug all hub ports
2. Set numUFPs = 0
3. For each Hub port in succession:
 a. Plug in the port.
 b. If PUT transitions to Unattached.SRC:
 i. CVS transitions to presenting both CC pins in vRa range
 ii. Wait longer than max tAccDetect
 iii. Verify PUT pin states remain unchanged.
 iv. CVS transitions to presenting both CC pins in vRd range
 v. Wait longer than max tAccDetect
 vi. Verify PUT pin states remain unchanged.
 vii. CVS transitions to presenting one CC pin in vRa range and one CC pin in vRd range
 viii. Verify PUT transitions to Attached.SRC
 ix. If PUT supports USB PD:
 01 CVS and PUT negotiate Explicit Power contract.
 02 Wait 3 * tAMETimeout
 03 CVS verifies PUT does not initiate Discover SVIDs, Discover Modes or Enter Mode requests.
 04 If PUT requests DR_Swap then numUFPs++
 c. CVS transitions to Disabled for 200ms.
 d. CVS transitions to Unattached.SRC.
 e. If PUT transitions to Unattached.SNK:
 i. Wait tDRP
 ii. Verify PUT did not transition to UnattachedAccessory
 iii. Verify PUT did not transition to Unattached.SRC
 iv. CVS transitions to Attached.SRC
 v. Verify PUT presents zSBUTermination on SBU pin does not connect SBU pin (above 950 kOhm on the pinopen)
 vi. If PUT does not support USB PD, then numUFPs++
 vii. If PUT supports USB PD:
Compliance Rev 0.2

01 CVS and PUT negotiate an Explicit Power contract
02 Wait 3 * tAMETimeout
03 If PUT does not request DR_Swap, then numUFPs++
04 Else if PUT does request DR_Swap:
 1. CVS completes DR_Swap with PUT.
 2. Wait 3 * tAMETimeout
 3. CVS verifies PUT does not initiate Discover SVIDs, Discover Modes or Enter Mode requests.
 f. Unplug Port
 g. Skip to step 1 next port until all ports are exhausted
4. If numUFPs == 1
 a. CVS prompts the test operator to verify there are no USB Type-B or Micro-B ports on the product.
5. Else If numUFPs == 0:
 a. CVS prompts the test operator to verify that either the hub is embedded or there is exactly 1 USB Type-B or Micro-B port on the product.
6. Else if numUFP > 1, the test fails.

Appendix A: TD Number Update

The Test Specification has been revised to include more connection tests as defined in the USB Type-C Spec 1.2. Effort has been made to maintain a test category taxonomy that is ontologically sound. As a result the Test Definitions have changed number indicator. The table below lists the previous tests and maps them to the current test numbers.

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Old TD Number</th>
<th>New TD Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Voltage Test</td>
<td>4.1</td>
<td>4.1.1</td>
</tr>
<tr>
<td>Source Connect Sink Test</td>
<td>4.2</td>
<td>4.2.1</td>
</tr>
<tr>
<td>Source Connect SNKAS Test</td>
<td>4.3</td>
<td>4.2.2</td>
</tr>
<tr>
<td>Source Connect DRP Test</td>
<td>4.4</td>
<td>4.2.3</td>
</tr>
<tr>
<td>Source Connect Audio Acc.</td>
<td>4.5</td>
<td>4.2.6</td>
</tr>
<tr>
<td>Source Connect Debug Acc.</td>
<td>4.6</td>
<td>4.2.7</td>
</tr>
<tr>
<td>Source Connect Vconn Acc.</td>
<td>4.7</td>
<td>4.2.8</td>
</tr>
<tr>
<td>Sink Connect Source Test</td>
<td>4.8</td>
<td>4.3.1</td>
</tr>
<tr>
<td>Sink Connect DRP Test</td>
<td>4.9</td>
<td>4.3.2</td>
</tr>
<tr>
<td>SNKAS Connect Source Test</td>
<td>4.10</td>
<td>4.4.1</td>
</tr>
<tr>
<td>SNKAS Connect DRP Test</td>
<td>4.11</td>
<td>4.4.2</td>
</tr>
<tr>
<td>SNKAS Connect Audio Acc.</td>
<td>4.12</td>
<td>4.4.6</td>
</tr>
<tr>
<td>SNKAS Connect Debug Acc.</td>
<td>4.13</td>
<td>4.4.7</td>
</tr>
<tr>
<td>SNKAS Connect PoweredAcc.</td>
<td>4.14</td>
<td>4.4.8</td>
</tr>
<tr>
<td>DRP Connect Sink Test</td>
<td>4.15</td>
<td>4.5.1</td>
</tr>
<tr>
<td>DRP Connect SNKAS Test</td>
<td>4.16</td>
<td>4.5.2</td>
</tr>
<tr>
<td>DRP Connect Source Test</td>
<td>4.17</td>
<td>4.5.3</td>
</tr>
<tr>
<td>DRP Connect DRP Test</td>
<td>4.18</td>
<td>4.5.4</td>
</tr>
<tr>
<td>DRP Connect Audio Acc. Test</td>
<td>4.19</td>
<td>4.8.1</td>
</tr>
<tr>
<td>DRP Connect Debug Acc. Test</td>
<td>4.20</td>
<td>4.8.2</td>
</tr>
<tr>
<td>DRP Connect Alternate Mode</td>
<td>4.21</td>
<td>4.8.3</td>
</tr>
<tr>
<td>DR_Swap Test</td>
<td>4.22</td>
<td>4.11.1</td>
</tr>
</tbody>
</table>

88
<table>
<thead>
<tr>
<th>Test Description</th>
<th>Section</th>
<th>Related Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vconn Powered Acc. Test</td>
<td>4.23</td>
<td>4.3.5 (Sink Connect SNKAS Test)</td>
</tr>
<tr>
<td>Source Suspend Test</td>
<td>4.24</td>
<td>4.9.1</td>
</tr>
<tr>
<td>USB Type-C Current Adv. Test</td>
<td>4.25</td>
<td>4.9.2</td>
</tr>
<tr>
<td>Source PR_Swap Test</td>
<td>4.26</td>
<td>4.9.3</td>
</tr>
<tr>
<td>Source Vconn_Swap Test</td>
<td>4.27</td>
<td>4.9.4</td>
</tr>
<tr>
<td>Source Alternate Mode Test</td>
<td>4.28</td>
<td>4.9.5</td>
</tr>
<tr>
<td>Legacy Host Adapter Test</td>
<td>4.29</td>
<td>Moved to EPC Test Spec</td>
</tr>
<tr>
<td>PD BFSK Capable Test</td>
<td>4.30</td>
<td>Removed</td>
</tr>
<tr>
<td>Sink Power Sub-States Test</td>
<td>4.31</td>
<td>4.10.1</td>
</tr>
<tr>
<td>Sink Power Precedence Test</td>
<td>4.32</td>
<td>4.10.2</td>
</tr>
<tr>
<td>Sink Suspend Test</td>
<td>4.33</td>
<td>4.10.3</td>
</tr>
<tr>
<td>Sink PR_Swap Test</td>
<td>4.34</td>
<td>4.10.4</td>
</tr>
<tr>
<td>Sink Vconn_Swap Test</td>
<td>4.35</td>
<td>4.10.5</td>
</tr>
<tr>
<td>Sink Alternate Mode Test</td>
<td>4.36</td>
<td>4.10.6</td>
</tr>
<tr>
<td>PD BFSK Capable Test</td>
<td>4.37</td>
<td>Removed</td>
</tr>
<tr>
<td>Sink Dead Battery Test</td>
<td>4.38</td>
<td>4.11.2</td>
</tr>
<tr>
<td>Hub Port 3.1 Test</td>
<td>4.39</td>
<td>4.12.1</td>
</tr>
<tr>
<td>Hub Port Types Test</td>
<td>4.40</td>
<td>4.12.2</td>
</tr>
</tbody>
</table>